Quantitative analyses of soil and sediment samples are often used to complement stratigraphic interpretations in archaeological and geoscientific research. The outcome of such analyses often is confined to small parts of the examined profiles as only a limited number of samples can be extracted and processed. Recent laboratory studies show that such selectively measured soil and sediment characteristics can be spatially extrapolated using spectral image data, resulting in reliable maps of a variety of parameters. However, on-site usage of this method has not been examined. We therefore explore, whether image data (RGB data and visible and near infrared hyperspectral data), acquired under regular fieldwork conditions during an archaeological excavation, in combination with a sampling strategy that is close to common practice, can be used to produce maps of soil organic matter, hematite, calcite, several weathering indices and grain size characteristics throughout complex archaeological profiles. We examine two profiles from an archaeological trench in Yeha (Tigray, Ethiopia). Our findings show a promising performance of RGB data and its derivative CIELAB as well as hyperspectral data for the prediction of parameters via random forest regression. By including two individual profiles we are able to assess the accuracy and reproducibility of our results, and illustrate the advantages and drawbacks of a higher spectral resolution and the necessary additional effort during fieldwork. The produced maps of the parameters examined allow us to critically reflect on the stratigraphic interpretation and offer a more objective basis for layer delineation in general. Our study therefore promotes more transparent and reproducible documentation for often destructive archaeological fieldwork.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485874 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238894 | PLOS |
Int J Syst Evol Microbiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Sciences & Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran.
Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China.
p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China. Electronic address:
3,5-Dichloroaniline (3,5-DCA) is extensively used in synthesizing dicarboximide fungicides, medical compounds and dyes. Due to its widespread use in agriculture and industry, 3,5-DCA is often detected in groundwater, wastewater, sediments and soil, posing great risk to animals and humans. However, the genes and enzymes involved in 3,5-DCA degradation remain unidentified.
View Article and Find Full Text PDFEnviron Technol
January 2025
School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, People's Republic of China.
This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!