Endophytic fungi produce many novel bioactive metabolites that are directly used as drugs or that function as the precursor structures of other chemicals. The metabolic shaping of endophytes on grape cells was reported previously. However, there are no reports on the interactions and metabolic impact of endophyte symbiosis on in vitro vine leaves, which may be examined under well-controlled conditions that are more representative of the natural situation of endophytes within grapevines. The present study used an in vitro leaf method to establish endophyte symbiosis of grapevines and analyze the effects on the metabolic profiles of grape leaves from two different cultivars, 'Rose honey' (RH) and 'Cabernet sauvignon' (CS). The effects of endophytic fungi on the metabolic profiles of grape leaves exhibited host selectivity and fungal strain specificity. Most of the endophytic fungal strains introduced novel metabolites into the two varieties of grape leaves according to the contents of the detected metabolites and composition of metabolites. Strains RH49 and MDR36, with high or moderate symbiosis rates, triggered an increased response in terms of the detected metabolites, and the strains MDR1 and MDR33 suppressed the detected metabolites in CS and RH leaves despite having strong or moderate symbiosis ability. However, the strain RH12 significantly induced the production of novel metabolites in RH leaves due to its high symbiosis ability and suppression of metabolites in CS leaves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485881 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238734 | PLOS |
Physiol Plant
January 2025
College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, P.R. China.
Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of AI & Big Data, Honam University, Gwangju 62399, Republic of Korea.
This study proposes an advanced plant disease classification framework leveraging the Attention Score-Based Multi-Vision Transformer (Multi-ViT) model. The framework introduces a novel attention mechanism to dynamically prioritize relevant features from multiple leaf images, overcoming the limitations of single-leaf-based diagnoses. Building on the Vision Transformer (ViT) architecture, the Multi-ViT model aggregates diverse feature representations by combining outputs from multiple ViTs, each capturing unique visual patterns.
View Article and Find Full Text PDFSci Rep
January 2025
Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.
The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece.
: Vine leaves are a bulky by-product that are disposed of and treated as waste in the wine production process. In the present study polyphenols from vine leaves were extracted and simultaneously encapsulated in a new delivery system consisting of liposomes and cyclodextrins. This system was further combined with propolis polyphenols encapsulated in cyclodextrins, resulting in a colloidal suspension for the release of antioxidants in a time-controlled way, the rate of which depends on the ratio of the materials.
View Article and Find Full Text PDFPlant Dis
December 2024
Northeast Agricultural University, Harbin, United States;
Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!