A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Model-Based Insulin Dose Optimization Algorithm for People With Type 1 Diabetes on Multiple Daily Injections Therapy. | LitMetric

Objective: Multiple daily injections (MDI) therapy is the most common treatment for type 1 diabetes (T1D) including basal insulin doses to keep glucose levels constant during fasting conditions and bolus insulin doses with meals. Optimal insulin dosing is critical to achieving satisfactory glycemia but is challenging due to inter- and intra-individual variability. Here, we present a novel model-based iterative algorithm that optimizes insulin doses using previous-day glucose, insulin, and meal data.

Methods: Our algorithm employs a maximum-a-posteriori method to estimate parameters of a model describing the effects of changes in basal-bolus insulin doses. Then, parameter estimates, their confidence intervals, and the goodness of fit, are combined to generate new recommendations. We assessed our algorithm in three ways. First, a clinical data set of 150 days (15 participants) were used to evaluate the proposed model and the estimation method. Second, 60-day simulations were performed to demonstrate the efficacy of the algorithm. Third, a sample 6-day clinical experiment is presented and discussed.

Results: The model fitted the clinical data well with a root-mean-square-error of 1.75 mmol/L. Simulation results showed an improvement in the time in target (3.9-10 mmol/L) from 64% to 77% and a decrease in the time in hypoglycemia (< 3.9 mmol/L) from 8.1% to 3.8%. The clinical experiment demonstrated the feasibility of the algorithm.

Conclusion: Our algorithm has the potential to improve glycemic control in people with T1D using MDI.

Significance: This work is a step forward towards a decision support system that improves their quality of life.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2020.3023555DOI Listing

Publication Analysis

Top Keywords

insulin doses
16
type diabetes
8
multiple daily
8
daily injections
8
clinical data
8
clinical experiment
8
algorithm
6
insulin
6
model-based insulin
4
insulin dose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!