Objective: This study investigates the factors contributing to the modulation of ankle stiffness during standing balance and evaluates the reliability of linear stiffness models.
Methods: A dual-axis robotic platform and a visual feedback display were used to quantify ankle stiffness in both the sagittal and frontal planes while subjects controlled different levels of ankle muscle co-contraction, center-of-pressure (CoP), and loading on the ankle.
Results: Results of 40 subjects demonstrated that ankle stiffness in the sagittal plane linearly increased with the increasing level of these three factors. The linear model relating the change in these factors from the baseline measurements during quiet standing to the change in weight normalized ankle stiffness resulted in high reliability (R = 0.83). Ankle stiffness in the frontal plane increased with the increasing ankle muscle co-contraction and ankle loading, but the linearity was less obvious. It also exhibited a clear nonlinear trend when CoP was shifted mediolaterally. Consequently, the reliability of the linear model was low for ankle stiffness in the frontal plane (R = 0.37).
Conclusion: During standing balance, ankle stiffness in the sagittal plane could be well explained by a linear model if ankle muscle activation, CoP, and ankle loading were collectively considered. However, the linear model cannot capture highly variable and nonlinear ankle stiffness characteristics in the frontal plane.
Significance: The outcomes of this study could benefit the development of lower-extremity robots and their controllers. Furthermore, the ankle stiffness models could be used as a baseline in developing patient-specific ankle rehabilitation protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2020.3023328 | DOI Listing |
Eur J Prev Cardiol
January 2025
Department of Cardiology, Kailuan General Hospital, Tangshan 063001, Hebei, CN.
Background: The precise pathways connecting insulin resistance (IR) to atherosclerotic cardiovascular disease (ASCVD) remain undefined. The present study aimed to examine the mediating role of arterial stiffness in the association between IR and ASCVD, providing epidemiology insights into the potential mechanisms driving IR to incident ASCVD.
Methods: A total of 59,777 participants from the Kailuan Study Arterial Stiffness Subcohort who were free of ASCVD at baseline were enrolled in the present study.
Am J Clin Nutr
January 2025
Department of Nutrition, Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, School of Public Health, Anhui Medical University, Hefei, China. Electronic address:
Background: Hippuric acid (HA), a host-microbe co-metabolite, normally derives from gut microbial catabolism of dietary polyphenols.
Objectives: We investigated the potential interplay between dietary polyphenols and gut microbiota on circulating HA levels, and examined the associations between serum concentrations of HA and cardiometabolic risk markers.
Methods: In a 1-year cohort of 754 community-dwelling adults, serum HA and its precursor [benzoic acid (BA)] and fecal microbiota were assayed using liquid chromatography-tandem mass spectrometry and 16S ribosomal RNA sequencing, respectively.
Sports Biomech
January 2025
School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.
Pelvic running injuries often require extensive rehabilitation and pelvic girdle pain is a barrier to running engagement in population sub-groups, such as perinatal women. However, exploration into how external pelvic loading may be altered during running is limited. This study assessed which biomechanical variables influence changes in external peak pelvic acceleration during treadmill running, across various stride frequency conditions.
View Article and Find Full Text PDFOrthop Traumatol Surg Res
January 2025
Department of Orthopedic Surgery, Clinique du Sport, 36 Boulevard Saint-Marcel, 75005 Paris, France.
Background: Many techniques have been described for lateral ankle ligament reconstruction. Although the biomechanical properties of gracilis tendons are different from those of ligaments, the use of a gracilis tendon autograft is a popular option for anatomical reconstruction. Graft maturation and the biomechanical processes over time remain unclear.
View Article and Find Full Text PDFJOR Spine
March 2025
Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.
Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!