Evaluate the accuracy of a 23-gene expression signature in differentiating benign nevi from melanoma by comparing test results with clinical outcomes. Seven dermatopathologists blinded to gene expression test results and clinical outcomes examined 181 lesions to identify diagnostically uncertain cases. Participants independently recorded diagnoses and responses to questions quantifying diagnostic certainty. Test accuracy was determined through comparison with clinical outcomes (sensitivity and percent negative agreement). Overall, 125 cases fulfilled criteria for diagnostic uncertainty (69.1%; 95% CI: 61.8-75.7%). Test sensitivity and percent negative agreement in these cases were 90.4% (95% CI: 79.0-96.8%) and 95.5% (95% CI: 87.3-99.1%), respectively. The 23-gene expression signature has high diagnostic accuracy in diagnostically uncertain cases when evaluated against clinical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.2217/pme-2020-0048DOI Listing

Publication Analysis

Top Keywords

expression signature
12
diagnostically uncertain
12
gene expression
8
23-gene expression
8
with clinical outcomes
8
clinical outcomes
8
uncertain cases
8
sensitivity percent
8
percent negative
8
negative agreement
8

Similar Publications

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Adoptive cell therapies (ACT) have shown reduced efficacy against solid tumor malignancies compared to hematologic malignancies, partly due to the immunosuppressive nature of the tumor microenvironment (TME). ACT efficacy may be enhanced with pleiotropic cytokines that remodel the TME; however, their expression needs to be tightly controlled to avoid systemic toxicities. Here we show T cells can be armored with membrane-bound cytokines with surface expression regulated using drug-responsive domains (DRDs) developed from the 260-amino acid protein human carbonic anhydrase 2 (CA2).

View Article and Find Full Text PDF

Network-based transfer of pan-cancer immunotherapy responses to guide breast cancer prognosis.

NPJ Syst Biol Appl

January 2025

Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.

Breast cancer prognosis is complicated by tumor heterogeneity. Traditional methods focus on cancer-specific gene signatures, but cross-cancer strategies that provide deeper insights into tumor homogeneity are rarely used. Immunotherapy, particularly immune checkpoint inhibitors, results from variable responses across cancers, offering valuable prognostic insights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!