Aberrantly processed or mutant proteins misfold and assemble into a variety of soluble oligomers and insoluble aggregates, a process that is associated with an increasing number of diseases that are not curable or manageable. Herein, we present a chemical toolbox, AggFluor, that allows for live cell imaging and differentiation of complex aggregated conformations in live cells. Based on the chromophore core of green fluorescent proteins, AggFluor is comprised of a series of molecular rotor fluorophores that span a wide range of viscosity sensitivity. As a result, these compounds exhibit differential turn-on fluorescence when incorporated in either soluble oligomers or insoluble aggregates. This feature allows us to develop, for the first time, a dual-color imaging strategy to distinguish unfolded protein oligomers from insoluble aggregates in live cells. Furthermore, we have demonstrated how small molecule proteostasis regulators can drive formation and disassembly of protein aggregates in both conformational states. In summary, AggFluor is the first set of rationally designed molecular rotor fluorophores that evenly cover a wide range of viscosity sensitivities. This set of fluorescent probes not only change the status quo of current imaging methods to visualize protein aggregation in live cells but also can be generally applied to study other biological processes that involve local viscosity changes with temporal and spatial resolutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088285 | PMC |
http://dx.doi.org/10.1021/jacs.0c07245 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, 256600, P.R. China.
Purpose: Immune checkpoint blockades (ICBs) are promising, however they do not fit all types of tumor, such as those lack of tumor antigens. Induction of potent anti-tumor T cell immunity is critical for cancer therapy. In this study, we investigated the efficacy of immunotherapy via the immunogenic cell death (ICD) dying tumor cells in mouse models of lung metastasis and tumorigenesis.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States. Electronic address:
The externalization of Phosphatidylserine (PS) from the inner surface of the plasma membrane to the outer surface of the plasma membrane is an emblematic event during apoptosis and serves as a potent "eat-me" signal for the efferocytosis of apoptotic cells. Although less well understood, PS is also externalized on live cells in the tumor microenvironment and on live virus-infected cells whereby it serves as an immune modulatory signal that drives tolerance and immune escape. Given the importance of PS in cancer immunology and immune escape, PS-targeting monoclonal antibodies have been characterized with promising immunotherapeutic potential.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Internal Medicine I, Ulm University Hospital, Ulm, Germany
Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!