Avian magnetoreception is assumed to occur in the retina. Although its molecular mechanism is unclear, magnetic field-dependent formation and the stability of radical-containing photointermediate(s) are suggested to play key roles in a hypothesis called the radical pair mechanism. Chicken cryptochrome4 (cCRY4) has been identified as a candidate magnetoreceptive molecule due to its expression in the retina and its ability to form stable flavin neutral radicals (FADH) upon blue light absorption. Herein, we used millisecond flash photolysis to investigate the cCRY4 photocycle, in both the presence and absence of dithiothreitol (DTT); detecting the anion radical form of FAD (FAD) under both conditions. Using spectral data obtained during flash photolysis and UV-visible photospectroscopy, we estimated the absolute absorbance spectra of the photointermediates, thus allowing us to decompose each spectrum into its individual components. Notably, in the absence of DTT, approximately 37% and 63% of FAD was oxidized to FAD and protonated to form FADH, respectively. Singular value decomposition analysis suggested the presence of two FAD molecular species, each of which was destined to be oxidized to FAD or protonated to FADH. A tyrosine neutral radical was also detected; however, it likely decayed concomitantly with the oxidation of FAD. On the basis of these results, we considered the occurrence of bifurcation prior to FAD generation, or during FAD oxidization, and discussed the potential role played by the tyrosine radical in the radical pair mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.0c00495 | DOI Listing |
Cancers (Basel)
December 2024
Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD. Over expression of Nampt, the rate-limiting enzyme of the NAD biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy. Electronic address:
Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls.
View Article and Find Full Text PDFNat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!