Somatostatin, an Binder to Aβ Oligomers, Binds to βPFO Tetramers.

ACS Chem Neurosci

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain.

Published: October 2020

Somatostatin (SST14) is strongly related to Alzheimer's disease (AD), as its levels decline during aging, it regulates the proteolytic degradation of the amyloid beta peptide (Aβ), and it binds to Aβ oligomers . Recently, the 3D structure of a membrane-associated β-sheet pore-forming tetramer (βPFO tetramer) has been reported. Here, we show that SST14 binds selectively to the βPFO tetramer with a value of ∼40 μM without binding to monomeric Aβ(1-42). Specific NMR chemical shift perturbations, observed during titration of SST14, define a binding site in the βPFO tetramer and are in agreement with a 2:1 stoichiometry determined by both native mass spectroscopy and isothermal titration calorimetry. These results enabled us to perform driven docking and model the binding mode for the interaction. The present study provides additional evidence on the relation between SST14 and the amyloid cascade and positions the βPFO tetramer as a relevant aggregation form of Aβ and as a potential target for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.0c00470DOI Listing

Publication Analysis

Top Keywords

βpfo tetramer
16
aβ oligomers
8
βpfo
5
tetramer
5
somatostatin binder
4
4
binder aβ
4
oligomers binds
4
binds βpfo
4
βpfo tetramers
4

Similar Publications

Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.

View Article and Find Full Text PDF

The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by HO are still unknown.

View Article and Find Full Text PDF

TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost.

View Article and Find Full Text PDF

Light-responsive hydrogels are highly valued for their dynamic mechanical properties and biocompatibility. In this study, we present a hydrogel system that can either soften or strengthen on green light exposure, or remain unresponsive to light, depending on the addition of adenosyl cobalamin (AdoCbl) and Co2+. These protein-based hydrogels were formed using genetically encoded SpyTag-SpyCatcher chemistry and included green light-sensitive CarHc protein domains.

View Article and Find Full Text PDF

High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!