First Report of Anthracnose Caused by Colletotrichum gloeosporioides on Akebia trifoliata in China.

Plant Dis

Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanic Garden, Chinese Academy of Sciences, Hubei Province, Wuhan, Lumo 1, Wuhan, China, 430074;

Published: September 2020

Akebia trifoliata (Thunberg) Koidzumi (three-leaf akebia), a climbing deciduous woody plant, grows wild in mountains of China and Japan. It has long been prized for its delicious sweet taste and medicinal value (Lu et al., 2019). Few pests and diseases reportedly affect this plant (Ye et al., 2013), but with more commercial planting of A. trifoliata in China, symptoms of anthracnose on leaves and fruits have increased. Between December 2018 and May 2019, typical anthracnose symptoms were first observed on A. trifoliata grown in Wuhan, China, with an incidence up to 15%. Diseased leaves exhibited irregular gray-brown spots with dark brown edges, and dark brown undersides, substantially affecting photosynthesis and growth. As disease progressed, white mycelium appeared on stems causing stem rot and fruit drop. Several round or needle-shaped dark brown spots formed on fruit peel, coalescing into irregular, slightly sunken blotches. Under high humidity, the whole fruit turned brown and the spots were covered by white mycelia, greatly affecting the fruits' ornamental quality. To isolate the pathogen, 5-mm2 pieces of symptomatic tissue from 10 infected leaves and fruits were surface-disinfected for 90 s in 1% sodium hypochlorite then 30 s in 75% ethanol, rinsed twice with sterile water, then incubated on potato dextrose agar (PDA, Oxoid) at 25°C under 12 h light/dark photoperiod. Pure cultures were obtained from hyphal tips of each colony. Initially, colonies produced white mycelia, turning gray after 5 days. The isolates produced abundant hyaline, single celled, straight and cylindrical conidia, with mean size 10.35 to 15.58 × 3.46 to 5.69 μm. Morphological characteristics were generally consistent with those of Colletotrichum gloeosporioides (Cannon et al. 2012). Genomic DNA of three isolates was extracted for PCR amplification of the internal transcribed spacer (ITS) region, and β-tubulin (TUB2), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes (Weir et al. 2012). BLAST search identified all sequences (GenBank accession nos. MT451846 to MT451848 for ITS, MT573957 to MT573959 for TUB2, and MT573960 to MT573962 for GAPDH) as 100% matches to C. gloeosporioides (Penz.) Penz. & Sacc. CBS 112999 strain (JQ005152 for ITS, JQ005587 for TUB2, JQ005239 for GAPDH) (Damm et al. 2009). Identification was confirmed by maximum likelihood phylogenetic analysis using MEGA7 . To evaluate pathogenicity, isolates were inoculated onto one side of 10 wounded healthy leaves of 1-year-old pot-grown A. trifoliata plants and 10 nearly mature fruits, with 10 μl of conidial suspension (106/ml) and colonized PDA pieces (5 mm diam.) from 7-day-old cultures of the fungus in Petri dishes; control sides received 10 μl sterile distilled water and sterile agar pieces. The test was performed twice. After incubation at 25°C, 70% humidity under 12 h fluorescent illumination/12 h dark for 5 days, similar spots were observed on all inoculated leaves and fruits. Controls remained asymptomatic. The re-isolated pathogen was identified as C. gloeosporioides by biological characteristics and sequencing analysis, indicating that C. gloeosporioides was a causal agent of anthracnose of A. trifoliata. Anthracnose caused by C. acutatum has been reported on A. trifoliata in Japan (Kobayshi et al. 2004). To our knowledge, this is the first report of C. gloeosporioides found on Akebia species. The new disease primarily reduces the quality and yield of A. trifoliata. Effective measures should be taken to manage this disease. Funding: This study was supported by the National Natural Science Foundation of China (31701974; 31901980), Science and technology program funded by Wuhan Science and Technology Bureau (2018020401011307). References: Lu, W.L., et al. 2019. J. Ethnopharmacol. 234:204. Ye, Y.F., et al. 2013. Plant Dis. 97:1659. Kobayshi, Y., et al. 2004. J. Gen. Plant Pathol. 70:295. Cannon, P.F., et al. 2012. Stud. Mycol. 73:181. Weir, B.S., et al. 2012. Stud. Mycol. 73:115. Damm, U., et al. 2009. Fungal Divers. 39:45.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-20-1525-PDNDOI Listing

Publication Analysis

Top Keywords

leaves fruits
12
dark brown
12
anthracnose caused
8
colletotrichum gloeosporioides
8
gloeosporioides akebia
8
trifoliata
8
akebia trifoliata
8
trifoliata china
8
brown spots
8
white mycelia
8

Similar Publications

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

Ashwagandha (Withania somnifera), enriched in alkaloids, steroidal lactones and saponins, is a valuable herb in Indian Ayurvedic medicine. During December 2023, Va-1 (Vallabh Ashwagandha-1) plants at ICAR -Central Tobacco Research Institute, Vedasandur, Tamil Nadu (10.53717ºN, 77.

View Article and Find Full Text PDF

Pitaya canker disease, caused by , is the primary threat to pitaya cultivation, significantly compromising fruit quality and reducing yield. WRKY transcription factors are essential regulators in plant pathogen recognition and defense mechanisms, yet their specific roles in the development of pitaya canker disease remain largely unexplored. In this study, five genes (, , , , and ) associated with pitaya canker disease were identified through RNA-Seq analysis.

View Article and Find Full Text PDF

'Lanjingling' [China National Plant Variety Protection (CNPVP) 20200389] is the first new nationally registered cultivar of blue honeysuckle (Lonicera caerulea L.) developed by the Northeast Agricultural University for the fresh-fruit market (Zhu et al. 2022).

View Article and Find Full Text PDF

Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), severely damages leaves and fruits, compromising passion fruit production. The dynamics of this infection in Passiflora spp. are still poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!