Stem rust is an important disease of cultivated oat () caused by f. sp. . In North America, host resistance is the primary strategy to control this disease and is conferred by a relatively small number of resistance genes. is a widely deployed stem rust resistance gene that originates from cultivated oat. Oat breeders wish to develop cultivars with multiple genes to slow the breakdown of single gene resistance, and often require DNA markers suited for marker-assisted selection. Our objectives were to (i) construct high density linkage maps for a major oat stem rust resistance gene using three biparental mapping populations, (ii) develop Kompetitive allele-specific PCR (KASP) assays for -linked single-nucleotide polymorphisms (SNPs), and (iii) test the prediction accuracy of those markers with a diverse panel of spring oat lines and cultivars. Genotyping-by-sequencing SNP markers linked to were identified in an AC Morgan/CDC Morrison recombinant inbred line (RIL) population. -linked SNPs were then analyzed in an AC Morgan/RL815 F population and an AC Morgan/CDC Dancer RIL population. Linkage analysis identified a common location for in all three populations on linkage group Mrg20 of the oat consensus genetic map. The most predictive markers were identified and converted to KASP assays for use in oat breeding programs. When used in combination, the KASP assays for the SNP loci avgbs2_126549.1.46 and avgbs_cluster_23819.1.27 were highly predictive of status in panel of 54 oat breeding lines and cultivars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-03-20-0076-R | DOI Listing |
Front Plant Sci
December 2024
Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.
View Article and Find Full Text PDFHeliyon
December 2024
Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
The global wheat production faces significant challenges due to major rust-causing fungi, namely f. sp. , , and f.
View Article and Find Full Text PDFPlants (Basel)
December 2024
N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, 630090 Novosibirsk, Russia.
The use of biological plant protection products is promising for agriculture. In particular, chitosan-based biopesticides have become widespread for stimulating growth and protecting plants from a wide range of pathogens. Novochizol is a product obtained by intramolecular cross-linking of linear chitosan molecules and has a globular shape, which provides it with a number of advantages over chitosan.
View Article and Find Full Text PDFTrends Mol Med
December 2024
Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Electronic address:
The Yamanaka factors (YFs), a set of four transcription factors, are widely studied for their ability to dedifferentiate somatic cells into a pluripotent state. In a recent study, Shen and colleagues show that transient expression of YFs in the mouse brain expands the developing cortex and prevents cognitive decline in an Alzheimer's disease (AD) model.
View Article and Find Full Text PDFJ Vis Exp
November 2024
Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University; School of Clinical Medicine, Guizhou Medical University;
Corneal inflammation, especially severe corneal inflammation, plays a significant role in the development of corneal limbal stem cell dysfunction. Constructing appropriate animal models can help us focus on the effects of severe inflammation on corneal limbal stem cells. A 2 mm rust remover was used to remove the central corneal epithelium of Sprague Dawley (SD) rats to create an injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!