Mechanistic Origin of Photoredox Catalysis Involving Iron(II) Polypyridyl Chromophores.

J Am Chem Soc

Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States.

Published: September 2020

Photoredox catalysis employing ruthenium- and iridium-based chromophores have been the subject of considerable research. However, the natural abundance of these elements are among the lowest on the periodic table, a fact that has led to an interest in developing chromophores based on earth-abundant transition metals that can perform the same function. There have been reports of using Fe-based polypyridyl complexes as photocatalysts, but there is limited mechanistic information pertaining to the nature of their reactivity in the context of photoredox chemistry. Herein, we report the results of bimolecular quenching studies between [Fe(tren(py))] (where tren(py) = tris(2-pyridyl-methylimino-ethyl)amine) and a series of benzoquinoid acceptors. The data provide direct evidence of electron transfer involving the lowest-energy ligand-field excited state of the Fe(II)-based photosensitizer, definitively establishing that Fe(II) polypyridyl complexes can engage in photoinduced redox reactions but by a mechanism that is fundamentally different than the MLCT-based chemistry endemic to their second- and third-row congeners.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c08389DOI Listing

Publication Analysis

Top Keywords

photoredox catalysis
8
polypyridyl complexes
8
mechanistic origin
4
origin photoredox
4
catalysis involving
4
involving ironii
4
ironii polypyridyl
4
polypyridyl chromophores
4
chromophores photoredox
4
catalysis employing
4

Similar Publications

Intermolecular oxidative N-N bond formation reactions are quite challenging and are largely uncharted. N-N linked dimeric indolosesquiterpene alkaloids represent an underexplored class of natural products, and strategies for direct dehydrogenative N-N bond formation are limited. Here, we have reported that a late-stage visible-light photoredox catalysis facilitates N-N bond formation, leading to the total syntheses of atropo-diastereomers dixiamycins A () and B ().

View Article and Find Full Text PDF

Bromide-promoted cascade annulation of isocyanobiaryls with aldehydes through photoredox catalysis.

Org Biomol Chem

January 2025

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.

Herein, we report a cascade annulation of readily available isocyanobiaryls with simple aldehydes photoredox catalysis, providing a straightforward approach towards valuable 6-hydroxyalkylated phenanthridines. Mechanistic studies indicated the generation of a key acyl radical from aldehydes by hydrogen atom abstraction with a bromine radical. This protocol exhibits exceptional chemoselectivity, excellent tolerance of various functional groups and mild reaction conditions.

View Article and Find Full Text PDF

Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.

View Article and Find Full Text PDF

The catalytic asymmetric multicomponent acylation/rearrangement/cyclization of alkenylfurans with acyl oxime esters/arylamines or acyl oxime esters/arylamines/hydroxylamine has been developed. This method employs synergistic photoredox/Brønsted acid catalysis, enabling the efficient and versatile synthesis of multifunctionalized [3.2.

View Article and Find Full Text PDF

In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative () as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate group in the presence of -(4--butylphenyl)iodonium hexafluorophosphate (Iod) as an additive, or in the presence of both Iod and ethyl-4-(dimethyl amino) benzoate (EDB) under LED irradiation at 365 nm. The photochemical properties of this new light-sensitive compound are described, and the wide redox window (3.27 eV) and the high excited-state potentials / (+2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!