Objectives: The analysis of prehistoric human dietary habits is key for understanding the effects of paleoenvironmental changes on the evolution of cultural and social human behaviors. In this study, we compare results from zooarchaeological, stable isotope and dental calculus analyses as well as lower second molar macrowear patterns to gain a broader understanding of the diet of three individuals who lived between the end of the Late Pleistocene and the Early Holocene (ca., 17-8 ky cal BP) in the Eastern Alpine region of Italy.
Materials And Methods: We analyze individuals buried at the sites of Riparo Tagliente (Verona), Riparo Villabruna, and Mondeval de Sora (Belluno). The three burials provide a unique dataset for diachronically exploring the influence of climatic changes on human subsistence strategies.
Results: Isotopic results indicate that all individuals likely relied on both terrestrial and freshwater animal proteins. Even though dental calculus analysis was, in part, hindered by the amount of mineral deposit available on the teeth, tooth macrowear study suggests that the dietary habits of the individuals included plant foods. Moreover, differences in macrowear patterns of lower second molars have been documented between Neanderthals and modern humans in the present sample, due to a prevalence of Buccal wear among the former as opposed to higher values of Lingual wear in modern human teeth.
Discussion: Isotopic analyses have emphasized the contribution of animal proteins in the diet of the three foragers from the Eastern Alpine region. The possible intake of carbohydrate-rich plant foods, suggested by the retrieval of plant remains in dental calculus, is supported by the signal of macrowear analysis. Moreover, the latter method indicates that the distribution of macrowear in lower second molars (M s) allows us to discriminate between Neanderthals and modern humans within the present reference sample. Overall, our results show these three prehistoric hunter-gatherers were well adapted to the environment in which they lived exploiting many natural resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918647 | PMC |
http://dx.doi.org/10.1002/ajpa.24128 | DOI Listing |
Plant Physiol Biochem
December 2024
Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
Glob Chang Biol
January 2025
Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.
View Article and Find Full Text PDFMicrobiologyopen
December 2024
Fondazione Edmund Mach, Research and Innovation Centre, Trento, Italy.
Changes in land use, climate, and host community are leading to increased complexity in eco-epidemiological relationships and the emergence of zoonoses. This study investigates the changes in the prevalence of several Ixodes ricinus-transmitted pathogens in questing ticks over a 10-year interval (2011-2013, 2020) in natural and agricultural habitats of the Autonomous Province of Trento (North-eastern Alps), finding an average prevalence of infection of 27.1%.
View Article and Find Full Text PDFCell
November 2024
Department of Archaeology, University of York, York 10 5DD, UK. Electronic address:
PeerJ
December 2024
Research Center of Agricultural Economics, School of Economics, Sichuan University of Science and Engineering, Zigong, Sichuan, China.
Background: The alpine wetlands in western Sichuan are distributed along the eastern section of the Qinghai-Tibet Plateau (QTP), where the ecological environment is fragile and highly sensitive to global climate change. These wetlands are already experiencing severe ecological and environmental issues, such as drought, retrogressive succession, and desertification. However, due to the limitations of computational models, previous studies have been unable to adequately understand the spatiotemporal change trends of these alpine wetlands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!