Flexible surface-enhanced Raman scattering (SERS) sensors have attracted great attention as a portable and low-cost device for chemical and bio-detection. However, flexible SERS sensors tend to suffer low signal spatial homogeneity due to the uneven distribution of active plasmonic nanostructures (hot spots) and quick degradation of their sensitivity due to low adhesion of hot spots and flexible substrates during fast sampling. Herein, a large-area (20 × 20 cm) polyimide (PI)-based SERS sensor is exploited for trace detection with high signal homogeneity and stability. The SERS sensor is constructed from PI through in situ growth of silver and gold core-shell nanoparticles (Ag@Au NPs) based on chemical reduction and galvanic replacement processes. Benefiting from the abundant carboxyl groups on the surface-cleaved PI, densely and uniformly distributed Ag@Au NPs are successfully prepared on the film under ambient conditions. The high Raman enhancement factor (EF) (up to 1.07 × 10) and detection capability with low nanomolar (10 M) detection limits are obtained for this flexible SERS sensor. The uniform Raman signals in the random region show good signal homogeneity with a low variation of 8.7%. Moreover, the flexible SERS sensor exhibited superior efficiency and durability after storage for 30 days even after 500 cycles of mechanical stimuli (bending or torsion). The residue of pesticide thiram (tetramethylthiuram disulfide, TMTD) has been rapidly traced by direct sampling from the apple surface, and a sensitivity of 10 ng/cm for TMTD was achieved. These findings show that the PI-based SERS sensor is a very strong candidate for broad and simple utilization of flexible SERS for both laboratory and commercial applications in chemical and biomolecule detections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c13691DOI Listing

Publication Analysis

Top Keywords

sers sensor
20
flexible sers
16
sers sensors
12
signal homogeneity
12
sers
9
flexible surface-enhanced
8
surface-enhanced raman
8
raman scattering
8
scattering sers
8
hot spots
8

Similar Publications

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers.

View Article and Find Full Text PDF

In situ self-cleaning PAN/CuO@Ag/Au@Ag flexible SERS sensor coupled with chemometrics for quantitative detection of thiram residues on apples.

Food Chem

January 2025

China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China. Electronic address:

Flexible surface-enhanced Raman scattering (SERS) sensors offer a promising solution for the rapid in situ monitoring of food safety. The sensor's capability to furnish quantitative detection and retain recyclability is crucial in practical applications. This study proposes a self-cleaning flexible SERS sensor, augmented with an intelligent algorithm designed for expeditious in situ and non-destructive thiram detection on apples.

View Article and Find Full Text PDF

Paper-Based Sensors: Fantasy or Reality?

Nanomaterials (Basel)

January 2025

Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova.

This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!