The giant sea bass Stereolepis gigas Ayres 1859 (GSB) is a critically endangered top marine predator in California. Since protection in 1982 and 1994, the population has appeared to increase, and individuals within a growing population may expand their ranges to new habitats to reduce intraspecific competition and increase foraging opportunities. In 2016-2018, two GSB tagged with acoustic transmitters were detected at artificial reefs for periods of up to 3 months during October-March, and one individual travelled 53 km from an offshore island to mainland California in 56 h. Artificial reefs may provide important foraging opportunities for these protected marine predators as they recover from exploitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfb.14539 | DOI Listing |
Biol Rev Camb Philos Soc
January 2025
Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil.
Non-native species can be major drivers of ecosystem alteration, especially through changes in trophic interactions. Successful non-native species have been predicted to have greater resource use efficiency relative to trophically analogous native species (the Resource Consumption Hypothesis), but rigorous evidence remains equivocal. Here, we tested this proposition quantitatively in a global meta-analysis of comparative functional response studies.
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara California USA.
Trade-offs between food acquisition and predator avoidance shape the landscape-scale movements of herbivores. These movements create landscape features, such as game trails, which are paths that animals use repeatedly to traverse the landscape. As such, these trails integrate behavioral trade-offs over space and time.
View Article and Find Full Text PDFMar Environ Res
January 2025
Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
Plankton communities are subjected to multiple global change drivers; however, it is unknown how the interplay between them deviates from predictions based on single-driver studies, in particular when trophic interactions are explicitly considered. We investigated how simultaneous manipulation of temperature, pH, nutrient availability and solar radiation quality affects the carbon transfer from phytoplankton to herbivorous protists and their potential consequences for ecosystem functioning. Our results showed that multiple interacting global-change drivers reduced the photosynthetic (gross primary production-to-electron transport rates ratios, from 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:
Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.
View Article and Find Full Text PDFEnviron Int
January 2025
IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France.
Humans are exposed to toxic methylmercury mainly by consuming marine fish, in particular top predator species like billfishes or tunas. In seafood risk assessments, mercury is assumed to be mostly present as organic methylmercury in predatory fishes; yet high percentages of inorganic mercury were recently reported in marlins, suggesting markedly different methylmercury metabolism across species. We quantified total mercury and methylmercury concentrations in muscle of four billfish species from the Indian and the Pacific oceans to address this knowledge gap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!