A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. | LitMetric

Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents.

Environ Sci Pollut Res Int

College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa.

Published: January 2021

Wastewater treatment plants (WWTPs) can be significant sources of antifungal resistant fungi, which can disseminate further in the environment by getting into rivers together with effluents discharged from WWTPs and pose a risk for human health. In this study, the presence of azole resistance was determined in fungal isolates from treated effluents of two WWTPs using the standard microdilution method from Clinical and Laboratory Standards Institute (CLSI). A total of 41 fungal isolates representing 23 fungal species and 16 fungal genera were obtained. Fungal genera related to the known human and/or plant pathogens such as Aspergillus, Fusarium, and Candida were detected. Among the observed species, the susceptibility of Aspergillus fumigatus and Fusarium oxysporum was tested against fluconazole (FCZ), ketoconazole (KTZ), itraconazole (ITZ), and voriconazole (VCZ). The isolate A. fumigatus was susceptible to KTZ, ITZ, and VCZ, while it showed resistance against FCZ. On the contrast, the isolate F. oxysporum showed resistance to KTZ, ITZ, and VCZ. Comparatively, VCZ showed highest activity against both A. fumigatus and F. oxysporum. Analysis of the gene Cyp51A for the A. fumigatus isolate showed no evidence of drug resistance that could be related to point mutations and/or tandem repeats in the gene. To the best of our knowledge, this is the first susceptibility test study on A. fumigatus and F. oxysporum isolates from the WWTPs of South Africa. In conclusion, this study indicated an urgent need for thorough investigation with larger group of fungal isolates from different regions of South Africa to broadly understand the role of WWTPs in the dissemination of azole antifungal drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10688-1DOI Listing

Publication Analysis

Top Keywords

fungal isolates
16
azole antifungal
8
wastewater treatment
8
fungal genera
8
ktz itz
8
itz vcz
8
fumigatus oxysporum
8
drug resistance
8
south africa
8
fungal
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!