The aim of this study was to investigate the fate of curcumin (CUR)-loaded Pickering emulsions with complex interfaces during gastrointestinal transit and test the efficacy of such emulsions on improving the bioaccessibility and cellular uptake of CUR. CUR-loaded Pickering emulsions tested were whey protein nanogel particle-stabilized Pickering emulsions (CUR-E) and emulsions displaying complex interfaces included 1) layer-by-layer dextran sulphate-coated nanogel-stabilized Pickering emulsions (CUR-DxS+E) and 2) protein+dextran-conjugated microgel-stabilized Pickering emulsions (CUR-E). The hypothesis was that the presence of complex interfacial material at the droplet surface would provide better protection to the droplets against physiological degradation, particularly under gastric conditions and thus, improve the delivery of CUR to Caco-2 intestinal cells. The emulsions were characterized using droplet sizing, apparent viscosity, confocal and cryo-scanning electron microscopy, zeta-potential, lipid digestion kinetics, bioaccessibility of CUR as well as cell viability and uptake by Caco-2 cells. Emulsion droplets with modified to complex interfacial composition ( CUR-DxS+E and CUR-E) provided enhanced kinetic stability to the Pickering emulsion droplets against coalescence in the gastric regime as compared to droplets having unmodified interface ( CUR-E), whereas droplet coalescence occurred in intestinal conditions irrespective of the initial interfacial materials. A similar rate and extent of free fatty acid release occurred in all the emulsions during intestinal digestion (), which correlated with the bioaccessibility of CUR. Striking, CUR-DxS+E and CUR-E significantly improved cellular CUR uptake as compared to CUR-E (). These results highlight a promising new strategy of designing gastric-stable Pickering emulsions with complex interfaces to improve the delivery of lipophilic bioactive compounds to the cells for the future design of functional foods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473359PMC
http://dx.doi.org/10.1016/j.crfs.2020.05.001DOI Listing

Publication Analysis

Top Keywords

pickering emulsions
28
complex interfaces
12
emulsions
10
pickering
8
bioaccessibility cellular
8
cellular uptake
8
cur-loaded pickering
8
emulsions complex
8
emulsions cur-e
8
complex interfacial
8

Similar Publications

Preventive effect of sea bass protein-based high internal phase Pickering emulsion loaded with astaxanthin on DEHP-induced liver lipid metabolism disorder.

Int J Biol Macromol

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:

The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function.

View Article and Find Full Text PDF

Sesamolin possesses limited aqueous solubility, a drawback for biological activity study in cancer cell models. This study aimed to enhance sesamolin's ability to fight cancer, as it is a bioactive compound with low water solubility found in sesame. We developed different Pickering emulsion delivery systems and tested their anticancer effects on various cancer cell types.

View Article and Find Full Text PDF

Stable Pickering emulsions of cinnamaldehyde were formulated using tannic acid-assisted cellulose nanofibers and applied for mango preservation.

Int J Biol Macromol

December 2024

College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China. Electronic address:

Recent explorations into cinnamaldehyde (CIN) have identified its potential as a natural preservative, particularly when incorporated into active packaging to enhance the shelf-life of fruits and vegetables. This study explores the use of cellulose nanofiber (CNF)-stabilized Pickering emulsions as a novel delivery system for essential oils, demonstrating broad applicability in food preservation strategies. We employ CNF as Pickering stabilizers to effectively emulsify and encapsulate CIN, investigating the influence of tannic acid (TA) concentrations on the stability of these emulsions.

View Article and Find Full Text PDF

Direct measurement of surface interactions experienced by sticky microcapsules made from environmentally benign materials.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.

We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.

View Article and Find Full Text PDF

Design and Characterization of Polyvinyl Alcohol/Kappa-Carrageenan Pickering Emulsion Biocomposite Films for Potential Wound Care Applications.

J Biomed Mater Res A

January 2025

Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda, Japan.

This study aimed to develop polyvinyl alcohol (PVA) and kappa-carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS-2 film exhibited the highest mechanical performance, with Young's modulus of 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!