Thermo-Electro-Mechanics at Individual Particles in Complex Colloidal Systems.

J Phys Chem C Nanomater Interfaces

Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.

Published: September 2019

It has been well established that thermoelectric (TE) field can arise from different Soret coefficients of salt ions in the aqueous solution under constant temperature gradient. Despite their high relevance to cellular biology and particle manipulations, understanding and controlling of TE field in complex colloidal systems that involve micro/nanoparticles, salt ions and molecules have remained challenging. In such colloidal systems, the challenge arises from the thermal interactions with charged micro/nanoparticles that distort the TE field around the particles. Herein, we provide a framework for TE field in colloidal suspensions with various ions and surfactants at the single-nanoparticle level. In particular, we reveal the spatial variation of TE field around a dielectric particle under temperature gradient to determine the thermoelectric trapping force on the particle. Our theoretical results on the trapping force predicted from the TE force profile match well with the experimental opto-thermoelectric trapping stiffness of particles in the solutions where the temperature gradient was well-controlled by a laser beam. With their insight into TE field and force in complex systems, our framework and methodology can be extended to engineer the TE field for versatile opto-thermoelectric manipulations of arbitrarily shaped particles with non-uniform surface morphology and to advance the scientific research in cellular biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480882PMC
http://dx.doi.org/10.1021/acs.jpcc.9b06425DOI Listing

Publication Analysis

Top Keywords

colloidal systems
12
temperature gradient
12
complex colloidal
8
salt ions
8
cellular biology
8
trapping force
8
field
7
thermo-electro-mechanics individual
4
particles
4
individual particles
4

Similar Publications

Near-infrared-triggered release of self-accelerating cascade nanoreactor delivered by macrophages for synergistic tumor photothermal therapy/starvation therapy/chemodynamic therapy.

J Colloid Interface Sci

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.

Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).

View Article and Find Full Text PDF

We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).

View Article and Find Full Text PDF

The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.

View Article and Find Full Text PDF

AF4/ICP-ToF-MS for the investigation of species-specific adsorption of organometallic contaminants on natural colloidal particles.

J Hazard Mater

January 2025

Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, Berlin 12489, Germany. Electronic address:

Organotin (OT) compounds, while crucial in many industrial applications, pose substantial risks to the environment and human health. The toxicity and environmental behaviour of OTs depend on their chemical form, i.e.

View Article and Find Full Text PDF

Rapid and accurate detection of Chlamydia psittaci, the causative agent of psittacosis, is crucial for both human and animal health but presents significant challenges, particularly in grassroots health institutions. Our previous PDTCTR fluorescence sensing platform, which combined the engineered Cas12f1_ge4.1 system with recombinase polymerase amplification (RPA), significantly enhanced detection efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!