It has been well established that thermoelectric (TE) field can arise from different Soret coefficients of salt ions in the aqueous solution under constant temperature gradient. Despite their high relevance to cellular biology and particle manipulations, understanding and controlling of TE field in complex colloidal systems that involve micro/nanoparticles, salt ions and molecules have remained challenging. In such colloidal systems, the challenge arises from the thermal interactions with charged micro/nanoparticles that distort the TE field around the particles. Herein, we provide a framework for TE field in colloidal suspensions with various ions and surfactants at the single-nanoparticle level. In particular, we reveal the spatial variation of TE field around a dielectric particle under temperature gradient to determine the thermoelectric trapping force on the particle. Our theoretical results on the trapping force predicted from the TE force profile match well with the experimental opto-thermoelectric trapping stiffness of particles in the solutions where the temperature gradient was well-controlled by a laser beam. With their insight into TE field and force in complex systems, our framework and methodology can be extended to engineer the TE field for versatile opto-thermoelectric manipulations of arbitrarily shaped particles with non-uniform surface morphology and to advance the scientific research in cellular biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480882 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.9b06425 | DOI Listing |
J Colloid Interface Sci
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.
Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China. Electronic address:
We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Breakthrough Technologies, Deakin, ACT, Australia.
The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, Berlin 12489, Germany. Electronic address:
Organotin (OT) compounds, while crucial in many industrial applications, pose substantial risks to the environment and human health. The toxicity and environmental behaviour of OTs depend on their chemical form, i.e.
View Article and Find Full Text PDFTalanta
January 2025
School of Medical Laboratory, Hunan University of Medicine, Hunan, 418000, China. Electronic address:
Rapid and accurate detection of Chlamydia psittaci, the causative agent of psittacosis, is crucial for both human and animal health but presents significant challenges, particularly in grassroots health institutions. Our previous PDTCTR fluorescence sensing platform, which combined the engineered Cas12f1_ge4.1 system with recombinase polymerase amplification (RPA), significantly enhanced detection efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!