A biocomposite-based rapid sampling assay for circulating cell-free DNA in liquid biopsy samples from human cancers.

Sci Rep

Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Published: September 2020

Cell-free nucleic acids (cfNAs) in liquid biopsy samples are emerging as important biomarkers for cancer diagnosis and monitoring, and for predicting treatment outcomes. Many cfNA isolation methods have been developed recently. However, most of these techniques are time-consuming, complex, require large equipment, and yield low-purity cfNAs because the genetic background of normal cells is amplified during cell lysis, which limits their clinical application. Here, we report a rapid and simple cfNA sampling platform that can overcome the limitations of conventional methods. We synthesised a biocomposite by combining amine-modified diatomaceous earth (DE) and cucurbituril (CB). The biocomposite platform showed high capture efficiency (86.78-90.26%) with genomic DNA and amplified DNA products (777, 525 and 150 bp). The biocomposite platform allowed the isolation of high purity and quantity cfDNAs from the plasma of 13 cancer patients (three colorectal cancer and ten pancreatic cancer samples) without requiring a lysis step or special equipment. The biocomposite platform may be useful to isolate cfNAs for the diagnosis and treatment of cancers in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484795PMC
http://dx.doi.org/10.1038/s41598-020-72163-8DOI Listing

Publication Analysis

Top Keywords

biocomposite platform
12
liquid biopsy
8
biopsy samples
8
biocomposite-based rapid
4
rapid sampling
4
sampling assay
4
assay circulating
4
circulating cell-free
4
cell-free dna
4
dna liquid
4

Similar Publications

Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs.

Environ Pollut

December 2024

Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. Electronic address:

Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.

View Article and Find Full Text PDF

This study aims to evaluate the osteoconductive and osteoinductive potential of novel composite collagenous sponges enriched with keratin (K), hydroxyapatite (HA), and their combination (K+HA) for osteochondral regeneration in rat knee models. By examining cell proliferation, mineralization, and vascularization, we aim to determine the regenerative effectiveness of these materials in promoting osteochondral repair, particularly in load-bearing joints like the knee. Addressing the problem of osteochondral defects (OCD), which lead to osteoarthritis-a condition characterized by pain and functional impairment-the hereby research evaluates these biomaterials for their potential to foster bone and cartilage repair, especially in load-bearing joints as the knee.

View Article and Find Full Text PDF

The field of engineering living materials (ELMs) seeks to engineer cells to form macroscopic materials with tailorable structures and properties. While the rheological properties of ELMs have been altered using synthetic biology methodology, the relationships connecting their sequence, structural, and rheological properties remain to be elucidated. Recently, our lab created centimeter-scale ELMs from that offer a platform to investigate this paradigm.

View Article and Find Full Text PDF
Article Synopsis
  • Natural design has inspired new materials, but using complex natural microstructures for functional materials is less explored.
  • The study focuses on Nacre, a biocomposite known for its unique structure, to analyze its phononic behavior at different frequencies.
  • Results show that Nacre exhibits simple properties at longer wavelengths but reveals a complex phononic spectrum when wavelengths match its structural features, challenging previous assumptions about its periodicity.
View Article and Find Full Text PDF

Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance.

J Am Chem Soc

December 2024

Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!