Volcanic ash is often neglected in climate simulations because ash particles are assumed to have a short atmospheric lifetime, and to not participate in sulfur chemistry. After the Mt. Kelut eruption in 2014, stratospheric ash-rich aerosols were observed for months. Here we show that the persistence of super-micron ash is consistent with a density near 0.5 g cm, close to pumice. Ash-rich particles dominate the volcanic cloud optical properties for the first 60 days. We also find that the initial SO lifetime is determined by SO uptake on ash, rather than by reaction with OH as commonly assumed. About 43% more volcanic sulfur is removed from the stratosphere in 2 months with the SO heterogeneous chemistry on ash particles than without. This research suggests the need for re-evaluation of factors controlling SO lifetime in climate model simulations, and of the impact of volcanic ash on stratospheric chemistry and radiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483524PMC
http://dx.doi.org/10.1038/s41467-020-18352-5DOI Listing

Publication Analysis

Top Keywords

volcanic ash
12
ash particles
12
optical properties
8
ash
7
persisting volcanic
4
particles
4
particles impact
4
impact stratospheric
4
lifetime
4
stratospheric lifetime
4

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

The 1831 CE mystery eruption identified as Zavaritskii caldera, Simushir Island (Kurils).

Proc Natl Acad Sci U S A

January 2025

Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.

Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.

View Article and Find Full Text PDF

Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.

View Article and Find Full Text PDF

The compositional heterogeneity of clinopyroxene in products of the 1888-90 eruption at La Fossa of Vulcano has been used to constrain times of the plumbing system reactivation before the eruption. We have also investigated the temporal trend of the SO flux at La Fossa crater since 1978 to gather information about the origin, depths and quantity of magma involved in the recent degassing crises. Petrological data emphasizes migration of deep-seated magmas and their emplacement in the shallow system, clearly supporting the involvement of three distinct phases of mafic replenishments occurred respectively 85-140, 16-35 and 2-7 years before the 1888-90 eruption.

View Article and Find Full Text PDF

Spectral gamma ray borehole logging data can yield insights into the physical properties of lake sediments, serving as a valuable proxy for assessing climate and environmental changes. The presence of tephra layers resulting from volcanic ash deposition is not related to climate and environmental conditions. As a result, these layers pose challenges when attempting to analyze paleoclimate and environmental time series.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!