Production of 2,3-dihydroxyisovalerate by Enterobacter cloacae.

Enzyme Microb Technol

Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK. Electronic address:

Published: October 2020

2,3-Dihydroxyisovalerate is an intermediate of the valine synthesis pathway. However, neither natural microorganisms nor valine producing engineered strains have been reported yet to produce this chemical. Based on the 2,3-butanediol synthesis pathway, a biological route of 2,3-dihydroxyisovalerate production was developed using a budA and ilvD disrupted Klebsiella pneumoniae strain in our previous research. We hypothesised, that other 2,3-butanediol producing bacteria could be used for 2,3-dihydroxyisovalerate production. Here a budA disrupted Enterobacter cloacae was constructed, and this strain exhibited a high 2,3-dihydroxyisovalerate producing ability. Disruption of ilvD in E. cloacae ΔbudA further increased 2,3-dihydroxyisovalerate level. The disruption of budA, encoding an acetolactate decarboxylase, resulted in the acetolactate synthesized in the 2,3-butanediol synthesis pathway to flow into the valine synthesis pathway. The additional disruption of ilvD, encoding a dihydroxy acid dehydratase, prevented the 2,3-dihydroxyisovalerate to be further metabolized in the valine synthesis pathway. Thus, the disruption of both budA and ilvD in 2,3-butanediol producing strains might be an universal strategy for 2,3-dihydroxyisovalerate accumulation. After optimization of the medium components and culture parameters 31.2 g/L of 2,3-dihydroxyisovalerate was obtained with a productivity of 0.41 g/L h and a substrate conversion ratio of 0.56 mol/mol glucose in a fed-batch fermentation. This approach provides an economic way for 2,3-dihydroxyisovalerate production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2020.109650DOI Listing

Publication Analysis

Top Keywords

synthesis pathway
20
valine synthesis
12
23-dihydroxyisovalerate production
12
23-dihydroxyisovalerate
9
enterobacter cloacae
8
23-butanediol synthesis
8
buda ilvd
8
23-butanediol producing
8
disruption ilvd
8
disruption buda
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!