Hyperspectral analysis represents a powerful technique for diagnostics of morphological and chemical information from aboveground parts of the plants, but the real potential of the method in pre-screening of phenolics in leaves is still insufficiently explored. In this study, assessment of the sensitivity and reliability of non-invasive methods of various phenolic compounds, also analyzed by HPLC in chicory plants (Cichorium intybus L.) exposed to various color light pretreatments was done. The hyperspectral records in visible and near infrared (VNIR) spectra were recorded using a handheld spectrometer and relationships between the specific hyperspectral parameters and the contents of tested phenolic compounds in chicory leaves were analyzed. Moreover, the correlations between the hyperspectral parameters and related parameters derived from the multispectral fluorescence records were assessed to compare the sensitivity of both techniques. The results indicated a relatively high correlation of anthocyanin-related parameters (ARI, mARI, mACI indices) with the content of some of tested phenolic compounds (quercetin-3-gluconuride, isorhamnetine-3-gluconuride, etc.), as well as with fluorescence ANTH index. Similar trends were observed in flavonoid parameter based on the near infra-red spectral bands (700, 760 nm), which expressed a high correlation with chlorogenic acid. On the other hand, the most frequently used flavonoid (FLAVI) indices based on UV-to-blue band reflectance showed very weak correlations with phenolic compounds, as well as with fluorescence FLAV index. The detailed analysis of the correlation between reflectance and fluorescence flavonoid parameters has shown that the parameters based on spectral reflectance are sensitive to increase of UV-absorbing compounds from low to moderate values, but, unlike the fluorescence parameter, they are not useful to recognize a further increase from middle to high or very high contents. Thus, our results outlined the possibilities, but also the limits of the use of hyperspectral analysis for rapid screening phenolic content, providing a practical evidence towards more efficient production of bioactive compounds for pharmaceutical or nutraceutical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.06.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!