Background: Forests have been grazed for millennia. Around the world, forest grazing by livestock became a controversial management practice, gradually restricted in many countries over the past 250 years. This was also the case in most Central and Eastern European countries, including Hungary, where forest grazing was a legally prohibited activity between 1961 and 2017. Until the 2010s, ecologists and nature conservationists considered it merely as a historical form of forest use. As a result, there is little contemporary scientific information available about the impact of forest grazing on vegetation and the traditional ecological knowledge associated with it. Our aim was to explore and summarize this type of knowledge held by herders in Hungary.

Methods: We interviewed 58 knowledgeable herders and participated in forest grazing activities in 43 study locations across the country. The results were analysed qualitatively.

Results: We revealed a living ecological knowledge tradition and practice of forest grazing in native and non-native forest stands. The impact of livestock grazing on native and non-native forests is not considerably different, in the view of the herders. For both forest types, the greatest impact of grazing was the suppression of the shrub layer, while grazing also increased the dominance and palatability ("tameness") of the grasses. Livestock could cause significant damage to seedlings during forest grazing, but if done with care, grazing could also be an integral part of forestry management.

Conclusions: Sustainability of current forest grazing practices depends on the depth of local and traditional knowledge applied and herders' stewardship. We stress the importance of collaborating with holders of local and traditional knowledge in order to gain a better understanding of the effects of livestock grazing on vegetation in temperate forests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488016PMC
http://dx.doi.org/10.1186/s13002-020-00397-xDOI Listing

Publication Analysis

Top Keywords

forest grazing
32
grazing
13
local traditional
12
traditional knowledge
12
forest
11
impact forest
8
grazing vegetation
8
ecological knowledge
8
grazing native
8
native non-native
8

Similar Publications

Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima.

View Article and Find Full Text PDF

Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.

View Article and Find Full Text PDF

Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.

View Article and Find Full Text PDF

Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.

View Article and Find Full Text PDF

The Tianshan wild fruit forest region is a vital repository of plant biodiversity, particularly rich in the unique genetic resources of endemic medicinal plants in this ecological niche. However, human activities such as unregulated mining and excessive grazing have led to a significant reduction in the diversity of these medicinal plants. This study represents the first application of DNA barcoding to 101 medicinal plants found in the Tianshan wild fruit forests, using three genetic loci along with morphological identification methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!