Common silage and concentrate-based diets in dairy and beef production may deliver insufficient amounts of essential fatty acids (EFA), thereby also reducing conjugated linoleic acids (CLA) in body tissues and milk. An impaired maternal EFA and CLA supply can have an important impact on calf postnatal development. The current study investigates how maternal supplementation with EFA and CLA affects muscle and adipose tissue development in neonatal calves. Holstein cows (n = 40) were abomasaly supplemented with coconut oil (control), CLA or EFA, or both combined during the transition period. Calves were fed their dam's colostrum until slaughter at day 5 of life. Fatty acid composition and tissue morphology were analyzed. In muscle and adipose tissues, EFA, CLA, and metabolites were elevated, indicating the effective transfer of maternally-supplemented FA to the offspring. Muscle fiber types, fiber nuclei, myosin heavy chain isoform distribution, capillarization, and fat cell size of intramuscular and other adipose tissues did not differ among groups. The results confirm that maternal nutrition during the transition period can alter the FA composition of the calf tissues. This could influence the offspring's development and health in the long-term, even though only minor effects were observed in the neonatal calves' tissue morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552164PMC
http://dx.doi.org/10.3390/ani10091598DOI Listing

Publication Analysis

Top Keywords

muscle adipose
12
efa cla
12
essential fatty
8
fatty acid
8
conjugated linoleic
8
adipose tissue
8
transition period
8
tissue morphology
8
adipose tissues
8
efa
5

Similar Publications

Background: For many colorectal cancer patients, primary surgery is the standard care of treatment. Further insights in perioperative care are crucial. The aim of this study is to assess the prognostic value of body composition for postoperative complications after laparoscopic and open colorectal surgery.

View Article and Find Full Text PDF

The role of adipose and muscle tissue breakdown on interorgan energy substrate fluxes in a Pseudomonas aeruginosa induced sepsis model in female pigs.

Physiol Rep

January 2025

Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.

Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates.

View Article and Find Full Text PDF

Objective: The study objective was to evaluate changes in abdominal adipose tissue and ectopic fat during pregnancy and their associations with gestational weight gain (GWG) in women with overweight/obesity.

Methods: This study was a secondary analysis of a randomized controlled trial. Magnetic resonance scans were performed during gestational week (GW) 15, GW 32, and around birth to measure abdominal subcutaneous (SAT) and visceral (VAT) adipose tissues, liver fat, and muscle fat.

View Article and Find Full Text PDF

Myosteatosis is associated with adiposity, metabolic derangements and mortality in patients with chronic kidney disease.

Eur J Clin Nutr

January 2025

Baxter Novum, Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska Institute, Stockholm, Sweden.

Background/objectives: Myosteatosis has been associated with sarcopenia, and increased mortality risk in patients on hemodialysis. We aimed to explore the associations between myosteatosis, as assessed by computed tomography (CT), with demographic parameters, body composition metrics, muscle strength, metabolic parameters and mortality in patients with chronic kidney disease (CKD).

Subjects/methods: We enrolled 216 patients (age 60.

View Article and Find Full Text PDF

Growing meat on autoclaved vegetables with biomimetic stiffness and micro-patterns.

Nat Commun

January 2025

School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.

Cultured meat needs edible bio-scaffolds that provide not only a growth milieu for muscle and adipose cells, but also biomimetic stiffness and tissue-sculpting topography. Current meat-engineering technologies struggle to achieve scalable cell production, efficient cell differentiation, and tissue maturation in one single culture system. Here we propose an autoclaving strategy to transform common vegetables into muscle- and adipose-engineering scaffolds, without undergoing conventional plant decellularization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!