The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0.

Int J Environ Res Public Health

Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal.

Published: September 2020

Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560192PMC
http://dx.doi.org/10.3390/ijerph17186528DOI Listing

Publication Analysis

Top Keywords

seaweed aquaculture
8
seaweeds
6
evolution road
4
road seaweed
4
aquaculture
4
aquaculture cultivation
4
cultivation technologies
4
technologies industry
4
industry seaweeds
4
seaweeds marine
4

Similar Publications

Seaweed residue hydrolysate enhances the intestinal health, immunity and disease resistance in northern snakehead (Channa argus).

Fish Shellfish Immunol

January 2025

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Seaweed residue hydrolysate (SRH), produced by the acid hydrolysis of seaweed processing residues, is rich in bioactive compounds. The development and utilization of SRH as an aquatic immune enhancer not only achieves high-value utilization of waste but also promotes green and healthy aquaculture. In this study, northern snakehead (Channa argus) juveniles fed a compound feed supplemented with SRH (treatment group) exhibited a significant enhancement in intestinal microbial diversity and the proliferation of beneficial bacteria after eight weeks.

View Article and Find Full Text PDF

Exploring the significance of emerging blue food processing technologies for sustainable development.

Food Res Int

January 2025

Research and Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad 121004, Haryana, India. Electronic address:

Blue food processing applies to the production and processing of fish, algae, and other aquatic organisms for human consumption. As the global population grows and consumer demand for protein-rich foods increases, there is increased interest in exploring a wide range of innovative approaches for processing blue foods in ways that improve the efficiency, sustainability, and nutritional quality of these products and reduce the environmental impact of their production. Existing approaches to process blue foods including fishing and aquaculture for production and manual processing at landing are not sufficiently scalable, efficient, or environmentally sustainable for today's global needs.

View Article and Find Full Text PDF

Protein enrichment of the red macroalga using pulsed electric field and enzymatic processing.

J Appl Phycol

August 2024

Department of Marine Biotechnology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway.

Unlabelled: The human population is steadily increasing and new alternative protein sources are necessary to secure food safety. There is a growing interest in macroalgae, or seaweed, as an alternative food source as they are rich in nutrients, minerals and carbohydrates. Among the diverse species of macroalga, , a red seaweed of growing interest due to its high protein content, represents a potential candidate for contributing to food security and animal feed.

View Article and Find Full Text PDF

Seaweed farming comprises over half of global coastal and marine aquaculture production by mass; however, the future of the industry is increasingly threatened by disease outbreaks. Nature-based solutions provided by enhancing functions of coinciding species or ecosystems offer an opportunity to increase yields by reducing disease outbreaks while conserving biodiversity. Seagrass ecosystems can reduce the abundance of marine bacterial pathogens, although it remains unknown whether this service can extend to reducing disease risk in a marine resource.

View Article and Find Full Text PDF

Shellfish and seaweed, the primary mariculture species in China, generate significant amounts of dissolved organic matter (DOM) during growth. This production significantly influences the carbon cycle in the marine environment. In the present study, we evaluated the DOM changes during growth in both seawater and sediments in Nan'ao, Guangdong Province, southern China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!