Cancer cells employ various defense mechanisms against drug-induced cell death. Investigating multi-omics landscapes of cancer cells before and after treatment can reveal resistance mechanisms and inform new therapeutic strategies. We assessed the effects of navitoclax, a BCL2 family inhibitor, on the transcriptome, methylome, chromatin structure, and copy number variations of MDA-MB-231 triple-negative breast cancer (TNBC) cells. Cells were sampled before treatment, at 72 h of exposure, and after 10-day drug-free recovery from treatment. We observed transient alterations in the expression of stress response genes that were accompanied by corresponding changes in chromatin accessibility. Most of these changes returned to baseline after the recovery period. We also detected lasting alterations in methylation states and genome structure that suggest permanent changes in cell population composition. Using single-cell analyses, we identified 2350 genes significantly upregulated in navitoclax-resistant cells and derived an 18-gene navitoclax resistance signature. We assessed the navitoclax-response-predictive function of this signature in four additional TNBC cell lines in vitro and in silico in 619 cell lines treated with 251 different drugs. We observed a drug-specific predictive value in both experiments, suggesting that this signature could help guiding clinical biomarker studies involving navitoclax.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563413PMC
http://dx.doi.org/10.3390/cancers12092551DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
navitoclax resistance
8
triple-negative breast
8
breast cancer
8
cell lines
8
cells
6
multi-omics investigation
4
investigation innate
4
navitoclax
4
innate navitoclax
4

Similar Publications

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

CASP5 associated with PANoptosis promotes tumorigenesis and progression of clear cell renal cell carcinoma.

Cancer Cell Int

January 2025

Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.

Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.

View Article and Find Full Text PDF

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1.

J Cardiothorac Surg

January 2025

Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.

Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

View Article and Find Full Text PDF

Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!