Mesoporous materials are structures characterized by a well-ordered large pore system with uniform porous dimensions ranging between 2 and 50 nm. Typical samples are zeolite, carbon molecular sieves, porous metal oxides, organic and inorganic porous hybrid and pillared materials, silica clathrate and clathrate hydrates compounds. Improvement in biochemistry and materials science led to the design and implementation of different types of porous materials ranging from rigid to soft two-dimensional (2D) and three-dimensional (3D) skeletons. The present review focuses on the use of three-dimensional printed (3DP) mesoporous scaffolds suitable for a wide range of drug delivery applications, due to their intrinsic high surface area and high pore volume. In the first part, the importance of the porosity of materials employed for drug delivery application was discussed focusing on mesoporous materials. At the end of the introduction, hard and soft templating synthesis for the realization of ordered 2D/3D mesostructured porous materials were described. In the second part, 3DP fabrication techniques, including fused deposition modelling, material jetting as inkjet printing, electron beam melting, selective laser sintering, stereolithography and digital light processing, electrospinning, and two-photon polymerization were described. In the last section, through recent bibliographic research, a wide number of 3D printed mesoporous materials, for in vitro and in vivo drug delivery applications, most of which relate to bone cells and tissues, were presented and summarized in a table in which all the technical and bibliographical details were reported. This review highlights, to a very cross-sectional audience, how the interdisciplinarity of certain branches of knowledge, as those of materials science and nano-microfabrication are, represent a growing valuable aid in the advanced forum for the science and technology of pharmaceutics and biopharmaceutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558976 | PMC |
http://dx.doi.org/10.3390/pharmaceutics12090851 | DOI Listing |
JAMA Cardiol
December 2024
The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
Importance: Drug-coated balloon (DCB) angioplasty has emerged as an alternative to drug-eluting stent (DES) implantation for percutaneous coronary intervention (PCI) in patients with coronary in-stent restenosis (ISR) as well as de novo coronary artery disease.
Observations: DCBs are balloons coated with antiproliferative agents and excipients, whose aim is to foster favorable vessel healing after appropriate lesion preparation. By providing homogeneous antiproliferative drug delivery in the absence of permanent foreign body implantation, DCBs offer multiple advantages over DES, including preservation of vessel anatomy and function and positive vessel remodeling.
This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infrared (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release.
View Article and Find Full Text PDFChem Biodivers
December 2024
Dr Dayaram Patel Pharmacy College, Pharmaceutics, Bardoli, 394601, Bardoli, INDIA.
Diabetes is a medical condition, which belongs to the group of chronic diseases that affects how body processes glucose, the primary source of energy for cells. Glucose comes indirectly from the consumed food and is carried by bloodstream to various cells in body. Insulin, a hormone synthesized by pancreas play a vital role in conversion of glucose to energy.
View Article and Find Full Text PDFInterdiscip Sci
December 2024
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, 213164, China.
Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN).
View Article and Find Full Text PDFInt J Clin Oncol
December 2024
Translational Research Support Office, Division of Drug and Diagnostic Development Promotion, Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Background: The implementation of cancer precision medicine in Japan is deeply intertwined with insurance reimbursement policies and requires case-by-case reviews by Molecular Tumor Boards (MTBs), which impose considerable operational burdens on healthcare facilities. The extensive preparation and review times required by MTBs hinder their ability to efficiently assess comprehensive genomic profiling (CGP) test results. Despite attempts to optimize MTB operations, significant challenges remain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!