Dielectric behavior of FeN@C composites with green synthesis and their remarkable electromagnetic wave absorption performance.

J Colloid Interface Sci

Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

Published: January 2021

FeN has been considered as a new generation of ideal ferromagnetic materials with the virtues of high saturated magnetization and high resistance to oxidation. However, a facile and eco-friendly fabrication of FeN still needs to be investigated. Herein, the gelatin derived from fish skin was chosen as the raw material of carbon and the amino acid inherent in fish skin can act as a nitrogen source for the generation of FeN. Besides, the influence of graphitization degree to dielectric behavior of composites was further investigated. In this work, the composites fabricated by 0.8 mmol Fe(NO) exhibited optimal absorption performance with the minimum reflection loss of -77.6 dB at 2.2 mm. Besides, the absorption bandwidth was detected as 7.76 GHz (covering from 10.24 to 18 GHz) at the matching thickness of 2.7 mm. According to the analysis of dielectric constant, the degree of graphitization affects the dielectric behavior mainly in determining the orientation speed of the dipole and the conductive loss. This work provides a new thought for the investigation of the electromagnetic absorption mechanism of composite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.08.087DOI Listing

Publication Analysis

Top Keywords

dielectric behavior
12
absorption performance
8
fish skin
8
dielectric
4
behavior fen@c
4
fen@c composites
4
composites green
4
green synthesis
4
synthesis remarkable
4
remarkable electromagnetic
4

Similar Publications

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

This paper presents a novel design approach for an anomalous reflector metasurface for communication systems operating at 8 GHz band. The main contribution of this work is the development of a general analytical method that accurately calculates the electromagnetic response of realistic metasurfaces with periodic impedance profiles. The modulated surface impedance is achieved by incorporating appropriately sized conductive patches on a grounded dielectric substrate.

View Article and Find Full Text PDF

Terahertz (THz) lens constitutes a vital component in the THz system. Metasurfaces-based THz metalenses and classical bulky lenses are severely constrained by chromatic/ spherical aberration and the diffraction limit. Consequently, achromatic super-resolution THz lenses are urgently needed.

View Article and Find Full Text PDF

Novel smart materials with high curie temperatures: EuDyGeO, EuLaGeO and EuHoGeO.

Appl Radiat Isot

December 2024

Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey.

The EuDyGeO, EuLaGeO and EuHoGeO powder were obtained through a solid-state reaction method via multistep firing of stoichiometric ratios of EuO, GeO, DyO, LaO and HoO in open atmosphere at temperatures from 800 to 1150 °C. The thermal behaviour, phase formation, SEM/EDX analysis, photoluminescence properties, Curie tempereture, dielectric and piezoelectric properties of the samples were investigated by TG/DTA, XRD, SEM, PL, TG/DTA, LCR-meter and d-meter, respectively. The germenates having triclinic crystal system have D→F, D→F, D→F, D→F transitions of Eu ions.

View Article and Find Full Text PDF

Ultra-Flexible High-Linearity Silicon Nanomembrane Synaptic Transistor Array.

Adv Mater

January 2025

School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.

The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!