AI Article Synopsis

  • Understanding the variability and fluxes in hydrologic catchments is essential for studying the chemical and physical processes behind material transport, necessitating high-frequency sampling.
  • Two high-frequency sampling devices were installed in a drainage area in Eastern Nebraska to measure flow rate, conductivity, and turbidity at 15-minute intervals over a year, with the goal of estimating total dissolved solids (TDS) and total suspended solids (TSS) fluxes.
  • Results indicated that TDS fluxes were significantly higher than TSS fluxes across the entire catchment, and that TSS fluxes were notably greater in agricultural areas, while efficient sampling strategies could greatly reduce errors in flux estimates.

Article Abstract

Quantifying temporal variability and fluxes within hydrologic catchments is critical to understanding the underlying chemical and physical processes leading to material transport. Measuring variability and fluxes requires sampling at time scales similar to the time scale of process occurrence. This demand has led to the development of automated sampling systems designed to sample at high frequencies, on the order of minutes. While widely deployed in a variety of systems, we installed two high-frequency sampling devices in a single drainage comprised of restored prairie and agricultural land uses in temperate Eastern Nebraska. The sampling systems determined flow rate, conductivity, and turbidity at 15-minute intervals for a twelve-month period. Conductivity was used as a proxy for total dissolved solids (TDS) concentrations and turbidity was used as a proxy for total suspended solids (TSS) concentrations. Using the high-frequency data, estimates of solids flux were calculated, error on the estimates was constrained, the effects of sample timing were considered, and conductivity and turbidity changes during precipitation events were examined. Overall, TDS fluxes were about three times higher than TSS fluxes from the catchment as a whole. However, the TSS fluxes were higher in the agricultural section of the catchment than from the restored prairie. Sheet and rill soil loss estimates from both the restored prairie and agricultural settings were low (<0.060 mm/yr). For TDS flux calculations, sampling at a monthly frequency gave a value that was only 11% lower than sampling every 15 min. For TSS flux calculations, sampling only during precipitation events (0.7% of the time) would capture 67% of the annual flux. Thus, minimizing error in sampling strategies depends on the constituent being analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141731DOI Listing

Publication Analysis

Top Keywords

restored prairie
16
prairie agricultural
12
high-frequency data
8
suspended solids
8
agricultural catchment
8
variability fluxes
8
sampling systems
8
conductivity turbidity
8
proxy total
8
tss fluxes
8

Similar Publications

Ancient engineers: The role of plateau pika in shaping ecological uniqueness and guiding plant diversity conservation in alpine grasslands.

J Environ Manage

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China. Electronic address:

Small burrowing herbivores play a crucial role in maintaining structure and function of grassland ecosystems. To date, our understanding of whether practicing ecological uniqueness can enhance plant diversity conservation under small herbivore disturbances remains limited. Here, we investigate the ecological uniqueness of plant communities, which include habitats disturbed and undisturbed by plateau pikas.

View Article and Find Full Text PDF

Premise: Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria.

Methods: Seed representing two species, Dalea candida and D.

View Article and Find Full Text PDF

Uncovering the multi-fencing effects: Changes in plant diversity across dimensions and spatio, and the relationship between diversity and stability.

J Environ Manage

January 2025

Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:

Plant diversity is fundamental to maintaining grassland ecosystem function. Rangeland managers use fencing as a strategy to enhance plant diversity in degraded grasslands. However, the effects of this natural management approach on grasslands across a wide range of environmental gradients and its spatial pattern remain unclear.

View Article and Find Full Text PDF

Soil microorganisms are essential for maintaining ecosystem functionality, particularly through their role in the nitrogen (N) biogeochemical cycle. Thus, they also contribute to greenhouse gas emissions from soils. Microorganisms are sensitive indicators of soil health, as they respond rapidly to disturbances caused by factors like unsustainable agricultural practices or industrial activities, such as mining.

View Article and Find Full Text PDF

Genome-wide characterization of the WRKY gene family and the role of LsfWRKY29 in regulating somatic embryogenesis in hybrid sweetgum (Liquidambar styraciflua × L. formosana).

Int J Biol Macromol

December 2024

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Hybrid sweetgum (Liquidambar styraciflua × L. formosana) is a globally significant forest tree resource, exhibiting significant economic, ornamental, ecological and medicinal values. Somatic embryogenesis (SE) is an effective reproductive strategy, having great application potential and economic value in large-scale propagation, artificial seed production, genetic transformation, germplasm preservation and biotechnology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!