Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Colon drug delivery is aimed at the administration of selected drugs to act locally or even systematically. Corticosteroid drugs are often used exerting even pronounced side effects due to systemic absorption. Here a new drug delivery system (DDS) based on the chemical conjugation of β-cyclodextrin to inulin to form the INUCD bioconjugate is described. It was designed with the aim to provide this DDS with colon degradable portions (inulin) which degradation products have direct beneficial effects on the well-being of the colon and with a carrier that can solubilize hydrophobic drugs (β-cyclodextrin). This system was specifically designed to promote a local/topical activity with a significant reduction of the drug systemic absorption. The INUCD bioconjugate was obtained by a simple chemistry binding β-cyclodextrin to an inulin succinate previously synthesized. The bioconjugate was then characterized in terms of physicochemical properties by ATR-FTIR, H NMR, DSC and TGA, DLS and SEM. Furthermore phase-solubility test by using curcumin as a model drug were performed as well as biologic evaluations for cytocompatibility and drug transport across in vitro simulated physiological barriers. Moreover enzymatic degradation studies by inulinase were performed. From the gained results a predictable local drug release of the payload could be attained so allowing a local delivery of e.g. corticosteroids thus avoiding a systemic absorption especially in prolonged therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119861 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!