Photolysis of trenbolone acetate (TBA) metabolites in the presence of various nitrogen-, sulfur-, or oxygen-containing nucleophiles (, azide, ammonia, or thiosulfate, respectively) results in rapid (half-lives ∼20-60 min), photochemically induced nucleophile incorporation across the parent steroid's trienone moiety. The formation of such nucleophile adducts limits formation of photohydrates, suggesting competition between the nucleophile and water for photochemical addition into the activated steroid structure. Analogous to previously reported photohydration outcomes, LC/MS analyses suggest that such photonucleophilic addition reactions are reversible, with more rapid elimination rates than thermal dehydration of photohydrates, and regenerate parent steroid structures. Beyond photonucleophilic addition pathways, we also found that hydroxylamine and presumed nucleophilic moieties in model dissolved organic matter (DOM; Fluka humic acid) can react thermal substitution with TBA metabolite photohydrates, although this reaction with model DOM was only observed for photohydrates of trendione. Most nucleophile addition products [, formed (photo)reaction with thiosulfate, hydroxylamine, and ammonia] are notably more polar relative to the parent metabolite and photohydration products. Thus, if present, both nucleophilic adducts and bound residues in organic matter will facilitate transport and help mask detection of TBA metabolites in surface waters and treatment systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c03821DOI Listing

Publication Analysis

Top Keywords

organic matter
12
photolysis trenbolone
8
trenbolone acetate
8
metabolites presence
8
dissolved organic
8
tba metabolites
8
photonucleophilic addition
8
acetate metabolites
4
presence nucleophiles
4
nucleophiles evidence
4

Similar Publications

We review the current state of understanding of Ceres as it relates to planetary protection policy for future landed missions, including for sample return, to the dwarf planet. The Dawn mission found Ceres to be an intriguing target for a mission, with evidence for the presence of regional, possibly extensive liquid at depth, and local expressions of recent and potentially ongoing activity. The Dawn mission also found a high abundance of carbon in the regolith, interpreted as a mix of carbonates and amorphous carbon, as well as locally high concentrations of organic matter.

View Article and Find Full Text PDF

Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.

View Article and Find Full Text PDF

Hydrogen is a zero-emissive fuel and has immense potential to replace carbon-emitting fuels in the future. The development of efficient H sensors is essential for preventing hazardous situations and facilitating the widespread usage of hydrogen. Chemiresistors are popular gas sensors owing to their attractive properties such as fast response, miniaturization, simple integration with electronics and low cost.

View Article and Find Full Text PDF

Intrinsic Mechanical Effects on the Activation of Carbon Catalysts.

J Am Chem Soc

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.

The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.

View Article and Find Full Text PDF

Long-term effects of combining anaerobic digestate with other organic waste products on soil microbial communities.

Front Microbiol

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.

Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!