A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Systematic Parameterization and Simulation of Boronic Acid-β-Lactamase Aqueous Solution in Developing the ABEEMσπ Polarizable Force Field. | LitMetric

Systematic Parameterization and Simulation of Boronic Acid-β-Lactamase Aqueous Solution in Developing the ABEEMσπ Polarizable Force Field.

J Phys Chem A

School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.

Published: October 2020

Boronic acid, an inhibitor of β-lactamase, has begun to be applied to the treatment of biological infections and tumors. Scientists are working to develop new and more effective boronic acid. Molecular dynamics (MD) simulation provides a powerful auxiliary tool for drug design. However, the current force fields have no boron-related parameters. In this work, an atom-bond electronegativity equalization method at the σπ level (ABEEMσπ) polarizable force field (ABEEMσπ PFF) of boronic acid and β-lactamase has been developed to determine the potential functions and parameters. The interaction between boron and serine in β-lactamase is regarded as a bonded mode. The interaction between them is simulated by the Morse potential energy function, which is close to the experimental change of the stretching potential energy in a large range. The potential energy surfaces of the bond length, bond angle, and dihedral angle of boronic acid-β-lactamase have the same stability point and change trend as M06-2X/6-311G**. For 47 boronic acid-β-lactamase training molecules, the linear correlation coefficient () of the charge distribution between the ABEEMσπ PFF and HF/STO-3G is greater than 0.96. Attributed to the fact that the charge distribution of the ABEEMσπ PFF can fluctuate with the change of geometry and environment, the polarization effect and charge-transfer effect are well reflected. The binding ability of different boronic acids with the same β-lactamase is different. A total of 10 boronic acid-β-lactamase model molecules and 10 boronic acid-β-lactamase and water complexes are simulated. The order of binding energy of five large model molecules calculated by the ABEEMσπ PFF is consistent with that of the MP2 method. The binding energies of boronic acid-β-lactamase and water complexes are close to those of the MP2 method. The results of MD simulation of five aqueous boronic acid-β-lactamase complexes in the ensemble verify the rationality of boron-related parameters of the ABEEMσπ PFF, which have a good application prospect. This study lays a solid theoretical foundation for further study of the inhibition of boronic acid on β-lactamase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c06806DOI Listing

Publication Analysis

Top Keywords

boronic acid-β-lactamase
28
abeemσπ pff
20
boronic acid
16
boronic
12
potential energy
12
abeemσπ polarizable
8
polarizable force
8
force field
8
boron-related parameters
8
acid β-lactamase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!