Water-soluble π-conjugated polymers are increasingly considered for DNA biosensing. However, the conformational rearrangement, supramolecular organization and dynamics upon interaction with DNA have been overlooked, which prevents the rational design of such detection tools. To elucidate the binding of a cationic polythiophene (CPT) to DNA with atomistic resolution, we performed molecular simulations of their supramolecular assembly. Comparison of replicated simulations show a multiplicity of CPT binding geometries that contribute to the wrapping of CPT around DNA. The different binding geometries are stabilized by both electrostatic interactions between CPT lateral cations and DNA phosphodiesters and van der Waals interactions between the CPT backbone and the DNA grooves. Simulated circular dichroism (CD) spectra show that the induced CD signal stems from a conserved geometrical feature across the replicated simulations, i. e. the presence of segments of syn configurations between thiophene units along the CPT chain. At the macromolecular scale, we inspected the different shapes related to the CPT binding modes around the DNA through symmetry metrics. Altogether, molecular dynamics (MD) simulations, model Hamiltonian calculations of the CD spectra, and symmetry indices provide insights into the origin of induced chirality from the atomic to the macromolecular scale. Our multidisciplinary approach points out the hierarchical aspect of CPT chiral organization induced by DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202000630 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6.
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.
View Article and Find Full Text PDFAndes Pediatr
August 2023
Departamento de Ciencias Humanas, Universidad Bernardo O'Higgins, Santiago, Chile.
Anticancer Drugs
January 2025
Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.
Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!