A novel chemiluminescent method was developed to evaluate ROS generation by platelets. This method allows measuring activities of NADPH oxidase (NOX2) and enzymes synthesizing secondary ROS (superoxide dismutase, catalase, etc.) in resting and ADP-activated platelets (inductor of platelet aggregation and ROS generation) using a small number of cells. The method was tested in the examination of patients with coronary heart disease. It was found that platelets from patients with coronary heart disease were characterized by NOX2 activation, while cell metabolism is tuned for a long-term intensive production of superoxide anion radical. The enzymes synthesizing secondary ROS were also activated, but cell metabolism could not maintain their enhanced activity for a long time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-020-04924-4DOI Listing

Publication Analysis

Top Keywords

patients coronary
12
coronary heart
12
heart disease
12
platelets patients
8
ros generation
8
enzymes synthesizing
8
synthesizing secondary
8
secondary ros
8
cell metabolism
8
chemiluminescent analysis
4

Similar Publications

Objectives: A recent coronavirus-related factory shutdown led to a global shortage of iodinated contrast. The authors evaluated how the contrast shortage impacted percutaneous coronary interventions (PCI).

Methods: Using a statewide database incorporating CathPCI registry data from 19 hospitals, the authors evaluated 2 time periods: pre-shortage (May 1, 2021 - April 30, 2022) and during the shortage (May 1, 2022 - October 31, 2022).

View Article and Find Full Text PDF

Objectives: Antegrade wiring (AW) is the most common coronary chronic total occlusion (CTO) crossing strategy and usually relies upon stepwise guidewire escalation starting from the low tip-load polymer-jacketed wire (standard guidewire escalation). The authors aimed to investigate whether the upfront use of intermediate tip-load polymer-jacketed guidewire translates into improved procedural outcomes of CTO percutaneous coronary intervention (PCI).

Methods: The Gladius First trial was a single-center, investigator-initiated, randomized, prospective trial.

View Article and Find Full Text PDF

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.

View Article and Find Full Text PDF

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!