Response to comment on 'Lack of evidence for associative learning in pea plants'.

Elife

Department of Plant Biology, University of California, Davis, Davis, United States.

Published: September 2020

In 2016 Gagliano et al. reported evidence for associative learning in plants (Gagliano et al., 2016). A subsequent attempt to replicate this finding by the present author was not successful (Markel, 2020). Gagliano et al. attribute this lack of replication to differences in the experimental set-ups used in the original work and the replication attempt (Gagliano et al., 2020). Here, based on a comparison of the two set-ups, I argue that these differences are unable to explain the lack of replication in Markel, 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556859PMC
http://dx.doi.org/10.7554/eLife.61689DOI Listing

Publication Analysis

Top Keywords

evidence associative
8
associative learning
8
markel 2020
8
lack replication
8
response comment
4
comment 'lack
4
'lack evidence
4
learning pea
4
pea plants'
4
plants' 2016
4

Similar Publications

Multi-scale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence from Cushing's Disease.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China. Electronic address:

Background: Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. This study explores structural and functional alterations of hippocampal subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure.

View Article and Find Full Text PDF

A novel method for solving the multiple-attribute decision-making problem is proposed using the complex Diophantine interval-valued Pythagorean normal set (CDIVPNS). This study aims to discuss aggregating operations and how they are interpreted. We discuss the concept of CDIVPN weighted averaging (CDIVPNWA), CDIVPN weighted geometric (CDIVPNWG), generalized CDIVPN weighted averaging (CGDIVPNWA) and generalized CGDIVPN weighted geometric (CGDIVPNWG).

View Article and Find Full Text PDF

For a proper representation of the causal structure of the world, it is adaptive to consider both evidence for and evidence against causality. To take punishment as an example, the causality of a stimulus is unlikely if there is a temporal gap before punishment is received, but causality is credible if the stimulus immediately precedes punishment. In contrast, causality can be ruled out if the punishment occurred first.

View Article and Find Full Text PDF

A decline in hippocampal function has long been associated with the progression of cognitive impairments in patients with Alzheimer's disease (AD). The disruption of hippocampal synaptic plasticity [primarily the reduction of long-term potentiation LTP] by excess production of soluble beta-amyloid (Aβ) has long been accepted as the mechanism by which AD pathology impairs memory, at least during the early stages of AD pathogenesis. However, the premise that hippocampal LTP underpins the formation of associative, long-term memories has been challenged.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!