Unitary Subharmonic Response and Floquet Majorana Modes.

Phys Rev Lett

IBM Research, MIT-IBM AI lab, Cambridge, Massachusetts 02142, USA.

Published: August 2020

Detection and manipulation of excitations with non-Abelian statistics, such as Majorana fermions, are essential for creating topological quantum computers. To this end, we show the connection between the existence of such localized particles and the phenomenon of unitary subharmonic response (SR) in periodically driven systems. In particular, starting from highly nonequilibrium initial states, the unpaired Majorana modes exhibit spin oscillations with twice the driving period, are localized, and can have exponentially long lifetimes in clean systems. While the lifetime of SR is limited in translationally invariant systems, we show that disorder can be engineered to stabilize the subharmonic response of Majorana modes. A viable observation of this phenomenon can be achieved using modern multiqubit hardware, such as superconducting circuits and cold atomic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.086804DOI Listing

Publication Analysis

Top Keywords

subharmonic response
12
majorana modes
12
unitary subharmonic
8
response floquet
4
majorana
4
floquet majorana
4
modes detection
4
detection manipulation
4
manipulation excitations
4
excitations non-abelian
4

Similar Publications

Interaction effects on acoustic emissions of submicron ultrasound contrast agents at subharmonic resonances.

Ultrasonics

December 2024

Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China. Electronic address:

Submicron ultrasound contrast agents hold great potential to extend the bubble-mediated theranostics beyond the vasculature, but their acoustic response and the interaction effects between them remain poorly understood. This study set out to numerically examine the interaction effects on the subharmonic oscillations of nanobubbles and the resultant acoustic emissions under subharmonic resonance conditions. Results showed that a negative correlation between bubble size and subharmonic resonance frequency is readily obtained from the radius response curves.

View Article and Find Full Text PDF
Article Synopsis
  • SHAPE is a noninvasive method to estimate blood pressure in organs by analyzing subharmonic signals generated by microbubbles in ultrasound; this study specifically tests how using a perfluorobutane gas core instead of sulfur hexafluoride affects the SHAPE response.
  • Experiments involved applying varying peak negative pressures and monitoring their effects on subharmonic signals, revealing that the perfluorobutane microbubbles initially do not produce subharmonics at low pressures but do generate a stable response under certain conditions.
  • The findings suggest that the gas core significantly influences subharmonic generation, which could lead to advancements in SHAPE techniques for better blood pressure estimation in clinical settings
View Article and Find Full Text PDF

Complex behavior in nonlinear dynamical systems often arises from resonances, which enable intricate energy transfer mechanisms among modes that otherwise would not interact. Theoretical, numerical and experimental methods are available to study such behavior when the resonance arises among modes of the linearized system. Much less understood are, however, resonances arising from nonlinear modal interactions, which cannot be detected from a classical linear analysis.

View Article and Find Full Text PDF

Long-lived topological time-crystalline order on a quantum processor.

Nat Commun

October 2024

Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, China.

Article Synopsis
  • Topologically ordered phases of matter go beyond traditional theories of symmetry-breaking, exhibiting unique traits like long-range entanglement and resilience to local changes.
  • The research focuses on observing a prethermal topologically ordered time crystal using superconducting qubits in a square lattice that are periodically driven, revealing new dynamics not seen in thermal equilibrium.
  • Findings include identifying discrete time-translation symmetry breaking and demonstrating the connection to topological order through measuring topological entanglement entropy, showcasing the potential for exploring novel phases of matter with quantum processors.
View Article and Find Full Text PDF

Objective: The objective of this study was to investigate the subharmonic response of Lumason (also known as SonoVue; Bracco, Milan, Italy) to static and dynamic ambient pressures, with a direct comparison to Sonazoid (GE HealthCare, Oslo, Norway) and Definity (Lantheus Medical Imaging, MA, USA). The subharmonic responses of contrast agents can be exploited to perform subharmonic-aided pressure estimation.

Methods: The subharmonic response of each ultrasound contrast agent was evaluated in both a static and dynamic tank using a commercially available Logiq E10 clinical ultrasound scanner (GE HealthCare) equipped with subharmonic imaging (SHI) and an acoustic power-optimization algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!