We demonstrate here a homogeneous assay, named NanoHybrid, for monoclonal antibody quantification directly in serum samples in a single-step format. NanoHybrid is composed of both synthetic peptide nucleic acids (PNAs) and nucleic acid strands conjugated to recognition elements and optical labels and is designed to allow fast fluorescence quantification of a therapeutic antibody. More specifically, we have characterized our analytical assay for the detection of trastuzumab (Herceptin), a monoclonal antibody (mAb) drug used for breast cancer treatment and for tumors overexpressing the HER2/neu protein. We show here that NanoHybrid is capable of performing fast drug quantification directly in blood serum. The results obtained with a pool of samples from breast cancer patients under trastuzumab treatment are compared with CE-IVD ELISA (enzyme-linked immunosorbent assay) showing a good agreement (Cohen's K = 0.729). Due to the modular nature of the NanoHybrid platform, this technology can be programmed to potentially detect and quantify any antibody for which a high-affinity recognition element has been characterized. We envision the application of NanoHybrid in a point-of-care (POC) drug monitoring system based on disposable kits for therapeutic drug management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.0c01046 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Rheumatism and Immunity, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
Patients receiving kidney transplant experience immunosuppression, which increases the risk of bacterial, viral, fungal, and parasitic infections. Q fever is a potentially fatal infectious disease that affects immunocompromised renal transplant recipients and has implications in terms of severe consequences for the donor's kidney. A patient with acute Q fever infection following kidney transplantation was admitted to the Tsinghua Changgung Hospital in Beijing, China, in March 2021.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFMult Scler
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Testing for myelin oligodendrocyte glycoprotein immunoglobulin G antibodies (MOG-IgG) is essential to the diagnosis of MOG antibody-associated disease (MOGAD). Due to its central role in the evaluation of suspected inflammatory demyelinating disease, the last 5 years has been marked by an abundance of research into MOG-IgG testing ranging from appropriate patient selection, to assay performance, to utility of serum titers as well as cerebrospinal fluid (CSF) testing. In this review, we synthesize current knowledge pertaining to the "who, what, where, when, why, and how" of MOG-IgG testing, with the aim of facilitating accurate MOGAD diagnosis in clinical practice.
View Article and Find Full Text PDFViruses
January 2025
Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
In this narrative review, we explore the burden and risk factors of various herpesvirus infections in patients receiving chimeric antigen receptor T-cell (CAR-T) therapy or bispecific antibodies (BsAb) for the treatment of hematologic malignancies. Antiviral prophylaxis for herpes simplex/varicella zoster viruses became part of the standard of care in this patient population. Breakthrough infections may rarely occur, and the optimal duration of prophylaxis as well as the timing of recombinant zoster immunization remain to be explored.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!