Tissue engineering has garnered significant attention for its potential to address the predominant modes of failure of small diameter vascular prostheses, namely mid-graft thrombosis and anastomotic intimal hyperplasia. In this review, we described two main features underpinning the promise of tissue-engineered vascular grafts: the incorporation of an antithrombogenic endothelium, and the generation of a structurally and biomechanically mimetic extracellular matrix. From the early attempts at the in-vitro endothelialization of vascular prostheses in the 1970s through to the ongoing clinical trials of fully tissue-engineered vascular grafts, the historical advancements and unresolved challenges that characterize the current state-of-the-art are summarized in a manner that establishes a guide for the development of an effective vascular prosthesis for small diameter arterial reconstruction. The importance of endothelial cell purity and their arterial specification for the prevention of both diffuse neointimal hyperplasia and the accelerated development of atherosclerotic lesions is delineated. Additionally, the need for an extracellular matrix that recapitulates both the composition and structure of native elastic arteries to facilitate the protracted stability and patency of an engineered vasoactive conduit is described. Finally, the capacity of alternative sources of cells and mechanical conditioning to overcome these technical barriers to the clinical translation of an effective small diameter vascular prosthesis is discussed. In conclusion, this review provides an overview of the historical development of tissue-engineered vascular grafts, highlighting specific areas warranting further research, and commentating on the outlook of a clinically feasible and therapeutically efficacious vascular prosthesis for small diameter arterial reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.23736/S0021-9509.20.11582-9 | DOI Listing |
Biomater Adv
January 2025
Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA. Electronic address:
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs.
View Article and Find Full Text PDFJ Biomater Appl
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.
In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Decellularized tissue-engineered vascular grafts (dTEVGs) exhibit superior biocompatibility, anti-infection properties and repair potential, contributing to better patency and making them a more ideal choice for arteriovenous grafts (AVGs) in hemodialysis compared to chemically synthesized grafts. However, the unsatisfactory reendothelialization and smooth muscle remodeling of current dTEVGs limit their advantages. In this study, we investigated the use of elastase to improve the porosity of elastic fiber layers in dTEVGs, aiming to promote cell infiltration and achieve superior reendothelialization and smooth muscle remodeling.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430070, China.
Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively.
View Article and Find Full Text PDFTissue Eng Part B Rev
January 2025
Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.
The increasing number of elderly people across the globe has led to a rise in osteoporosis and bone fractures, significantly impacting the quality of life and posing substantial health and economic burdens. Despite the development of tissue-engineered bone constructs and stem cell-based therapies to address these challenges, their efficacy is compromised by inadequate vascularization and innervation during bone repair. Innervation plays a pivotal role in tissue regeneration, including bone repair, and various techniques have been developed to fabricate innervated bone scaffolds for clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!