PTP1B dephosphorylates insulin receptor and substrates to modulate glucose metabolism. This enzyme is a validated therapeutic target for type 2 diabetes, but no current drug candidates have completed clinical trials. Pyrrolo[1,2-a]quinoxalines substituted at positions C1-C4 and/or C7-C8 were found to be nontoxic to cells and good inhibitors in the low- to sub-micromolar range, with the 4-benzyl derivative being the most potent inhibitor (0.24 μm). Some analogues bearing chlorine atoms at C7 and/or C8 kept potency and showed good selectivity compared to TCPTP (selectivity index >40). The most potent inhibitors behaved as insulin mimetics by increasing glucose uptake. The 4-benzyl derivative inhibited insulin receptor substrate 1 and AKT phosphorylation. Molecular docking and molecular dynamics simulations supported a putative binding mode for these compounds to the allosteric α3/α6/α7 pocket, but inconsistent results in enzyme inhibition kinetics were obtained due to the high tendency of these inhibitors to form stable aggregates. Computational calculations supported the druggability of inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202000446DOI Listing

Publication Analysis

Top Keywords

insulin mimetics
8
insulin receptor
8
4-benzyl derivative
8
pyrrolo[12-a]quinoxalines insulin
4
mimetics exhibit
4
exhibit potent
4
potent selective
4
selective inhibition
4
inhibition protein
4
protein tyrosine
4

Similar Publications

Phenotypic screening in zebrafish larvae identifies promising cyanobacterial strains and pheophorbide a as insulin mimetics.

Sci Rep

December 2024

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, Matosinhos, 4450-208, Portugal.

Diabetes is a pandemic disease that causes the loss of control of glucose regulation in the organism, in consequence of dysfunction of insulin production or functionality. In this work, the antidiabetic bioactivity of 182 fractions from 19 cyanobacteria strains derived from the LEGE Culture Collection were analysed using the 2-NBDG assay in zebrafish larvae. From this initial screening, two fractions (57 (06104_D) and 107 (03283_B)) were identified as promising insulin mimetics.

View Article and Find Full Text PDF

This minireview focuses on vanadium complexes in photodynamic therapy (PDT), particularly for their potential as mitochondria-targeted anticancer agents. Vanadium's coordination versatility supports its bioactivity, showing promise in insulin-mimetic, lipid-lowering, and antitumor effects. PDT leverages these complexes' redox properties, producing reactive oxygen species (ROS) within mitochondria to induce cancer cell apoptosis with minimal impact on healthy cells.

View Article and Find Full Text PDF

Purpose: Caloric restriction (CR), the permanent or periodic reduction of caloric intake, is a dietary strategy that promotes longevity and healthspan, yielding multiple beneficial effects, such as improved insulin sensitivity and mitochondrial function, decreased body weight, and mitigation of cardiometabolic risk factors. The purpose of our study was the in silico and in vitro assessment of the effects exerted by pinostilbene on SIRT1 and SIRT6 compared to those of resveratrol, a known activator of these enzymes.

Materials And Methods: Molecular docking was carried out to determine the interactions with SIRT1 and SIRT6 and, further, the effect of pinostilbene on their activity was tested in vitro to evaluate if it parallels resveratrol's effects regarding SIRT activation.

View Article and Find Full Text PDF

Engineering of Novel Analogues That Are More Receptor-Selective and Potent than the Native Hormone, Insulin-like Peptide 5 (INSL5).

J Med Chem

December 2024

Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia.

Article Synopsis
  • Insulin-like peptide 5 (INSL5) primarily targets the RXFP4 receptor found in the colorectum and has potential for treating gastrointestinal issues like constipation.
  • While INSL5 can bind to the RXFP3 receptor, it does not activate it, highlighting the specificity of the INSL5/RXFP4 pathway for therapeutic applications.
  • The study developed an engineered INSL5 analogue (A13:B7-24-GG) that features a simpler structure, resulting in easier synthesis and improved potency and selectivity compared to native INSL5, making it a strong candidate for constipation treatment.
View Article and Find Full Text PDF
Article Synopsis
  • * Over 10 weeks, the treatments led to significant improvements in blood glucose levels and weight management, with the combination therapy restoring important metabolic hormones and enhancing liver health.
  • * The findings suggest that these new GPR119 agonists, especially when used with DPP-IV inhibitors, could be promising for treating metabolic dysfunctions and liver issues associated with type-2 diabetes, indicating a need for further research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!