Although research in bioinspired nanocomposites is delivering mechanically superior nanocomposite materials, there remain gaps in understanding some fundamental design principles. This article discusses how the mechanical properties of nacre-mimetic polymer/nanoclay nanocomposites with nanoconfined polymer layers are controlled by the thermo-mechanical polymer properties, that is, glass transition temperature, T using a series of poly(ethylene glycol methyl ether methacrylate-co-N,N-dimethylacrylamide) copolymers with tunable T from 130 to -55 °C. It is elucidated that both the type of copolymer and the nanoconfined polymer layer thickness control energy dissipation and inelastic deformation at high fractions of reinforcements in such bioinspired nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202000380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!