Objective: To identify CT-acquisition parameters accounting for radiomics variability and to develop a post-acquisition CT-image correction method to reduce variability and improve radiomics classification in both phantom and clinical applications.

Methods: CT-acquisition protocols were prospectively tested in a phantom. The multi-centric retrospective clinical study included CT scans of patients with colorectal/renal cancer liver metastases. Ninety-three radiomics features of first order and texture were extracted. Intraclass correlation coefficients (ICCs) between CT-acquisition protocols were evaluated to define sources of variability. Voxel size, ComBat, and singular value decomposition (SVD) compensation methods were explored for reducing the radiomics variability. The number of robust features was compared before and after correction using two-proportion z test. The radiomics classification accuracy (K-means purity) was assessed before and after ComBat- and SVD-based correction.

Results: Fifty-three acquisition protocols in 13 tissue densities were analyzed. Ninety-seven liver metastases from 43 patients with CT from two vendors were included. Pixel size, reconstruction slice spacing, convolution kernel, and acquisition slice thickness are relevant sources of radiomics variability with a percentage of robust features lower than 80%. Resampling to isometric voxels increased the number of robust features when images were acquired with different pixel sizes (p < 0.05). SVD-based for thickness correction and ComBat correction for thickness and combined thickness-kernel increased the number of reproducible features (p < 0.05). ComBat showed the highest improvement of radiomics-based classification in both the phantom and clinical applications (K-means purity 65.98 vs 73.20).

Conclusion: CT-image post-acquisition processing and radiomics normalization by means of batch effect correction allow for standardization of large-scale data analysis and improve the classification accuracy.

Key Points: • The voxel size (accounting for the pixel size and slice spacing), slice thickness, and convolution kernel are relevant sources of CT-radiomics variability. • Voxel size resampling increased the mean percentage of robust CT-radiomics features from 59.50 to 89.25% when comparing CT scans acquired with different pixel sizes and from 71.62 to 82.58% when the scans were acquired with different slice spacings. • ComBat batch effect correction reduced the CT-radiomics variability secondary to the slice thickness and convolution kernel, improving the capacity of CT-radiomics to differentiate tissues (in the phantom application) and the primary tumor type from liver metastases (in the clinical application).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880962PMC
http://dx.doi.org/10.1007/s00330-020-07174-0DOI Listing

Publication Analysis

Top Keywords

radiomics variability
16
batch correction
12
liver metastases
12
voxel size
12
robust features
12
convolution kernel
12
slice thickness
12
radiomics
8
variability
8
correction allow
8

Similar Publications

Traumatic acute subdural hematoma (aSDH) often requires surgical intervention, such as craniotomy, to relieve mass lesions and pressure. The extent of hematoma evacuation significantly impacts patient outcomes. This study utilizes 3D Slicer software to analyse post-craniotomy hematoma volume changes and evaluate their prognostic significance in aSDH patients.

View Article and Find Full Text PDF

Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.

View Article and Find Full Text PDF

Objectives: To evaluate 18F-DCFPyL-PET/MRI whole-gland-derived radiomics for detecting clinically significant (cs) prostate cancer (PCa) and predicting metastasis.

Methods: Therapy-naïve PCa patients who underwent 18F-DCFPyL PET/MRI were included. Whole-prostate-segmentation was performed.

View Article and Find Full Text PDF

Background: Perineural invasion (PNI) in colorectal cancer (CRC) is a significant prognostic factor associated with poor outcomes. Radiomics, which involves extracting quantitative features from medical imaging, has emerged as a potential tool for predicting PNI. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of radiomics models in predicting PNI in CRC.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!