Circular RNAs (circRNAs) are endogenous RNAs with a covalently closed continuous loop, generated through various backsplicing events of pre-mRNA. An accumulating number of studies have shown that circRNAs are potential biomarkers for major human diseases such as cancer and Alzheimer's disease. Thus, identification and prediction of human disease-associated circRNAs are of significant importance. To this end, a computational analysis-assisted strategy is indispensable to detect, verify, and quantify circRNAs for downstream applications. In this review, we briefly introduce the biology of circRNAs, including the biogenesis, characteristics, and biological functions. In addition, we outline about 30 recent bioinformatic analysis tools that are publicly available for circRNA study. Principles for applying these computational strategies and considerations will be briefly discussed. Lastly, we give a complete survey on more than 20 key computational databases that are frequently used. To our knowledge, this is the most complete and updated summary on publicly available circRNA resources. In conclusion, this review summarizes key aspects of circRNA biology and outlines key computational strategies that will facilitate the genome-wide identification and prediction of circRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450300 | PMC |
http://dx.doi.org/10.1155/2020/6798590 | DOI Listing |
Cytotechnology
April 2025
Department of Child Health, Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Wuhan, 430070 China.
Unlabelled: Inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, often emerges during childhood and poses significant challenges due to its adverse effects on growth, development, and psychosocial well-being. Circular RNAs (circRNAs) have been implicated in the pathogenesis of diverse diseases. However, the specific biological role and mechanisms of circRNA OMA1 in children with IBD remain largely unexplored.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, North Dongmen Road, Luohu District, Shenzhen, 518020 Guangdong China.
This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression.
View Article and Find Full Text PDFMol Ther Oncol
March 2025
Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Pancreatic cancer is among the most challenging tumors to treat, and due to its immune tolerance characteristics, existing immunotherapy methods are not effective in alleviating the disease. Oncolytic virus therapy, a potential new strategy for treating pancreatic cancer, also faces the limitation of being ineffective when used alone. Elucidating the key host endogenous circular RNAs (circRNAs) involved in M1 virus-mediated killing of pancreatic ductal adenocarcinoma (PDAC) cells may help overcome this limitation.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Background: Circular RNAs play an important role in regulating lung adenocarcinoma (LUAD). Bioinformatics analysis identified circ_0015278 as differentially expressed in LUAD. However, the biological mechanism of circ_0015278 in LUAD has not been fully clarified, especially in ferroptosis.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Background: Circular RNAs (circRNAs) play a pivotal role in the development and advancement of various cancer types. However, the involvement of circ-PAN3 in hepatocellular carcinoma (HCC) is not well understood. To shed light on this, we conducted a comprehensive study through biochemistry, cell biology, molecular biology, and bioinformatics techniques to investigate the role of circ-PAN3 and its associated pathway in the progression of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!