In the present study, we employ fluorescence spectroscopy, dynamic light scattering, and molecular docking methods. Binding of anticancer drug anastrozole with human lysozyme (HL) is studied. Binding of anastrozole to HL is moderate but spontaneous. There is anastrozole persuaded hydrodynamic change in HL, leading to molecular compaction. Binding of anastrozole to HL also decreased in vitro lytic activity of HL. Molecular docking results suggest the electrostatic interactions and van der Waals forces played key role in binding interaction of anastrozole near the catalytic site. Binding interaction of anastrozole to proteins other than major transport proteins in blood can significantly affect pharmacokinetics of this molecule. Hence, rationalizing drug dosage is important. This study also points to unrelated effects that small molecules bring in the body that are considerable and need thorough investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468670PMC
http://dx.doi.org/10.1155/2020/8363685DOI Listing

Publication Analysis

Top Keywords

human lysozyme
8
anticancer drug
8
drug anastrozole
8
molecular docking
8
binding anastrozole
8
binding interaction
8
interaction anastrozole
8
anastrozole
7
binding
5
biophysical insight
4

Similar Publications

Human activities increasingly threaten marine ecosystems through rising waste and temperatures. This study investigated the role of plastics as vectors for bacteria and the effects of temperature on the marine sponge . Samples of plastics and sponges were collected during July, August (high-temperature period), and November (lower-temperature period).

View Article and Find Full Text PDF

The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.

View Article and Find Full Text PDF

Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.

View Article and Find Full Text PDF

Highly Potent New Probiotic Strains from Traditional Turkish Fermented Foods.

Curr Microbiol

January 2025

Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye.

Traditional Turkish fermented foods like boza, pickles, and tarhana are recognized for their nutritional and health benefits, yet the probiotic potential of lactic acid bacteria (LAB) strains isolated from them remains underexplored. Sixty-six LAB strains were isolated from fermented foods using bacterial morphology, Gram staining, and catalase activity. The isolates were differentiated at strain level by RAPD-PCR (Random Amplification of Polymorphic DNA-Polymerase Chain Reaction) and twenty-five strains were selected for further evaluation of acid and bile salt tolerance.

View Article and Find Full Text PDF

Aims: To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors.

Methods And Results: C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!