Objective: To assess the efficacy and feasibility of a dual-hormone (DH) closed-loop system with insulin and a novel liquid stable glucagon formulation compared with an insulin-only closed-loop system and a predictive low glucose suspend (PLGS) system.

Research Design And Methods: In a 76-h, randomized, crossover, outpatient study, 23 participants with type 1 diabetes used three modes of the Oregon Artificial Pancreas system: ) dual-hormone (DH) closed-loop control, ) insulin-only single-hormone (SH) closed-loop control, and ) PLGS system. The primary end point was percentage time in hypoglycemia (<70 mg/dL) from the start of in-clinic aerobic exercise (45 min at 60% VO) to 4 h after.

Results: DH reduced hypoglycemia compared with SH during and after exercise (DH 0.0% [interquartile range 0.0-4.2], SH 8.3% [0.0-12.5], = 0.025). There was an increased time in hyperglycemia (>180 mg/dL) during and after exercise for DH versus SH (20.8% DH vs. 6.3% SH, = 0.038). Mean glucose during the entire study duration was DH, 159.2; SH, 151.6; and PLGS, 163.6 mg/dL. Across the entire study duration, DH resulted in 7.5% more time in target range (70-180 mg/dL) compared with the PLGS system (71.0% vs. 63.4%, = 0.044). For the entire study duration, DH had 28.2% time in hyperglycemia vs. 25.1% for SH ( = 0.044) and 34.7% for PLGS ( = 0.140). Four participants experienced nausea related to glucagon, leading three to withdraw from the study.

Conclusions: The glucagon formulation demonstrated feasibility in a closed-loop system. The DH system reduced hypoglycemia during and after exercise, with some increase in hyperglycemia.

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc19-2267DOI Listing

Publication Analysis

Top Keywords

closed-loop system
20
dual-hormone closed-loop
12
glucagon formulation
12
entire study
12
study duration
12
system
10
liquid stable
8
stable glucagon
8
insulin-only closed-loop
8
predictive low
8

Similar Publications

Visualized neural network-based vibration control for pigeon-like flexible flapping wings.

ISA Trans

January 2025

School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:

This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.

View Article and Find Full Text PDF

The paper presents a new sensor-less voltage and frequency control method for a stand-alone doubly-fed induction generator (DFIG) feeding an isolated load. The proposed control approach directly regulates the magnitude and angle of the rotor-flux vector rather than controlling rotor currents or voltages as in classic field oriented control (FOC). To accurately regulate the magnitude and frequency of stator voltage, two separate closed-loop based PI regulators are employed to evaluate the reference signals of the rotor flux vector magnitude and angle, respectively.

View Article and Find Full Text PDF

Circular RNAs as Key Regulators in Cancer Hallmarks: New Progress and Therapeutic Opportunities.

Crit Rev Oncol Hematol

January 2025

Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:

Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing.

View Article and Find Full Text PDF

The current research introduces a model-free ultra-local model (MFULM) controller that utilizes the multi-agent on-policy reinforcement learning (MAOPRL) technique for remotely regulating blood pressure through precise drug dosing in a closed-loop system. Within the closed-loop system, there exists a MFULM controller, an observer, and an intelligent MAOPRL algorithm. Initially, a flexible MFULM controller is created to make adjustments to blood pressure and medication dosages.

View Article and Find Full Text PDF

Unnecessary preoperative testing poses a risk to patient safety, causes surgical delays, and increases healthcare costs. We describe the effects of implementing a fully EHR-integrated closed-loop clinical decision support system (CDSS) for placing automatic preprocedural test orders at two teaching hospitals in Madrid, Spain. Interrupted time series analysis was performed to evaluate changes in rates of preoperative testing after CDSS implementation, which took place from September 2019 to December 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!