The non-invasive quantification of tumor burden and the response to therapies remain an important objective for imaging modalities. To characterize the performance of two newly optimized ultrasound-based analyses, we applied shear wave and H-scan scattering analyses to repeated trans-abdominal ultrasound scans of a murine model of metastatic pancreatic cancer. In addition, bioluminescence measurements were obtained as an alternative reference. The tumor metastases grow aggressively and result in death at approximately 4 wk if untreated, but longer for those treated with chemotherapy. We found that our three imaging methods (shear wave speed, H-scan, bioluminescence) trended toward increasing output measures with time during tumor growth, and these measures were delayed for the group receiving chemotherapy. The relative sensitivity of H-scan tracked closely with bioluminescence measurements, particularly in the early to mid-stages of tumor growth. The correlation between H-scan and bioluminescence was found to be strong, with a Spearman's rank correlation coefficient greater than 0.7 across the entire series. These preliminary results suggest that non-invasive ultrasound imaging analyses are capable of tracking the response of tumor models to therapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066934PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2020.08.006DOI Listing

Publication Analysis

Top Keywords

shear wave
12
pancreatic cancer
8
bioluminescence measurements
8
h-scan bioluminescence
8
tumor growth
8
h-scan
5
tumor
5
h-scan shear
4
wave bioluminescent
4
bioluminescent assessment
4

Similar Publications

Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.

Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.

View Article and Find Full Text PDF

The steep temperature gradient near the bottom of the mantle is known to generate a negative correlation between the shear wave velocity ( ) and the depth in most regions of the D″ layer, as detected by seismological observations. However, increasing with depth is observed at the D″ layer beneath Central America, where the Farallon slab sinks, and the origin of this anomaly has not been well constrained. Here, we calculate the thermoelastic constants and obtain the elastic wave velocities of hydrous phase H with various Al contents and cation configurations, which may act as a water carrier to the D″ layer.

View Article and Find Full Text PDF

Transient shear wave elastometry using a portable magnetic resonance sensor.

Magn Reson Med

January 2025

MRI Research Centre, Physics, University of New Brunswick, Fredericton, New Brunswick, Canada.

Purpose: Magnetic resonance elastography (MRE) provides detailed maps of tissue stiffness, helping to diagnose various health conditions, but requires the use of expensive clinical MRI scanners. Our approach utilizes compact, cost-effective portable MR sensors that offer bulk characterization of material properties in a region of interest close to the surface (within 1-2 cm). This accessible instrument could enable routine monitoring and prevention of diseases not readily evaluated with conventional tools.

View Article and Find Full Text PDF

Objectives: To determine the efficacy of quantitative shear wave elastography in differentiating benign and malignant axillary lymph nodes (ALN).

Methods: Exactly 127 lymph nodes from 127 patients with clinically palpable axillary swelling were examined by both B-mode sonography and elastography from November 2022 to March 2024. Gray-scale sonograms were evaluated based on: the short-axis diameter, shape, hilum, maximum cortical thickness, and border of the ALN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!