Vesicles and red blood cells in shear flow.

Soft Matter

Adhésion et Inflammation, Inserm U600, CNRS UMR 62 12 Université Méditerranée, case 937, 163 av de Luminy, Marseille Cedex, 13288, France.

Published: March 2008

We describe the similarities and the specificities of the behaviour of individual soft particles, namely, drops, lipid vesicles and red blood cells subjected to a shear flow. We highlight that their motion depends in a non-trivial way on the particle mechanical properties. We detail the effect of the presence of a wall with or without wall-particle attractive interaction from a biological perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b716612eDOI Listing

Publication Analysis

Top Keywords

vesicles red
8
red blood
8
blood cells
8
shear flow
8
cells shear
4
flow describe
4
describe similarities
4
similarities specificities
4
specificities behaviour
4
behaviour individual
4

Similar Publications

The opportunistic pathogen sp. ATCC 39006 (S39006) is a rod-shaped, motile, Gram-negative bacterium that produces a 𝛽-lactam antibiotic (a carbapenem) and a bioactive red-pigmented tripyrrole antibiotic, prodigiosin. It is also the only known enterobacterium that naturally produces intracellular gas vesicles (GVs), enabling cells to float in static water columns.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.

Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!