Direct observation of adhesion and spreading of emulsion droplets at solid surfaces.

Soft Matter

Laboratory of Physical Chemistry and Colloid Science, Wageningen University and Research Centre, PO Box 8038, Wageningen, 6700 EK, The Netherlands.

Published: April 2008

Sensory perception of fat is related to orally perceived in-mouth friction. From this perspective, we investigate adhesion and spreading of emulsion droplets on solid surfaces and connect it to the ability of food emulsions to lower friction. Furthermore, we study what the contribution is of the separate colloidal forces on droplet adhesion. The effect of saliva on adhesion and spreading is also briefly investigated. Using a flow cell in combination with light microscopy and video imaging allowed us to clearly distinguish between adhered and spread emulsion droplets. The capability to make this distinction between adhesion and spreading experimentally is new and provided us with the insight that the occurrence of spreading is essential for lowering friction. Mainly electrostatic, steric and hydrophobic interactions of the droplets with solid surfaces are found to determine adhesion and subsequent spreading of emulsion droplets. This was investigated by varying the adsorbed amount of protein, the ionic strength of the emulsion as well as the hydrophobicity of the solid surface. Especially the hydrophobic interaction between droplet and surface is shown to be crucial for droplet adhesion and spreading. Saliva is of minor importance for adhesion and spreading. This work gives insight in the way emulsion droplets interact with solid surfaces and the type of colloidal interactions that play a role. The information it provides can be used to develop emulsions that are reasonably stable during the shelf life of the product, but do spread on oral surfaces, thus lowering friction and enhancing fat perception.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b718891aDOI Listing

Publication Analysis

Top Keywords

adhesion spreading
24
emulsion droplets
20
solid surfaces
16
spreading emulsion
12
droplets solid
12
adhesion
8
spreading
8
droplet adhesion
8
lowering friction
8
emulsion
6

Similar Publications

Unlabelled: Bone tissue substitutes are increasing in importance. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) act as a cell matrix and improve its mechanical properties. One of their raw materials is marine-origin by-products.

View Article and Find Full Text PDF

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.

Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.

View Article and Find Full Text PDF

Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the biofilm formation abilities of clinical strains, assess their antibiotic susceptibility patterns, and identify the prevalence of adhesion-associated genes.

Methodology: In this study, a total of 60  strains were collected from urine, pus, wounds, blood, body fluid, and sputum in health centers affiliated with Abadan University of Medical Sciences, Iran. Strains were identified via microbiological methods and polymerase chain reaction (PCR) to target the gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!