Strain induced clustering in polyelectrolyte hydrogels.

Soft Matter

Physico-chimie des Polymères et des Milieux Dispersés, UMR 7615, UPMC-CNRS-ESPCI, 10 rue Vauquelin, 75005 Paris, France.

Published: April 2008

Systematic large strain compression measurements have been performed on polyelectrolyte hydrogels based on modified PAA crosslinked by bifunctional thiols. For compressive strains larger than a critical value depending on polymer concentration, we observed a significant hysteresis, strain-hardening and a stress plateau during unloading. This was attributed to strain-induced ionic clustering due to electrostatic interactions that can become attractive if chains are close enough to each other. This phenomenon is dynamic and reversible but a long lifetime for the clusters has been identified. Although clustering between like-charge chains has been reported for hydrogels, it is the first time that this phenomenon is caused by deformation. This effect is potentially important as we strive to understand the behaviour of all polyelectrolyte hydrogels at large strains which are highly relevant for fracture properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b717460hDOI Listing

Publication Analysis

Top Keywords

polyelectrolyte hydrogels
12
strain induced
4
induced clustering
4
clustering polyelectrolyte
4
hydrogels
4
hydrogels systematic
4
systematic large
4
large strain
4
strain compression
4
compression measurements
4

Similar Publications

Enhancing Tribo-Rehydration in Hydrogel by Brush-Like Surface and Its Modulation.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.

View Article and Find Full Text PDF

Polyelectrolyte hydrogels are smart materials whose swelling behavior is governed by ionizable groups on their polymeric chains, making them sensitive to pH and ionic strength. This study combined experiments and modeling to characterize anionic hydrogels. Mechanical tests and gravimetric analyses were performed to track hydrogel mass over time and at a steady state under varying pH and salt concentrations.

View Article and Find Full Text PDF

Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.

View Article and Find Full Text PDF

Manipulating Toughness and Microstructure in Polyelectrolyte Complex Hydrogels with Competitive Surfactant Micelles.

Langmuir

December 2024

Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.

Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.

View Article and Find Full Text PDF

Synthesis and characterization of gelatin/chondroitin sulfate microgels with NaCl: Preliminary research toward wound healing applications.

Int J Biol Macromol

December 2024

Grupo de Materiales Compuestos Termoplásticos (COMP), Instituto de ciencia y tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10890, 7600 Mar del Plata, Buenos Aires, Argentina.

Gelatin and chondroitin sulfate are natural polymers with significant potential in the biomedical field, particularly for wound healing applications. They can form hydrogels that absorb exudates and exhibit anti-inflammatory and antioxidant properties. Silver nanoparticles (AgNPs) can be used as antibacterial agents in wound management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!