Mixed films containing a conjugated "molecular wire" candidate and an "insulating" fatty acid have been prepared by the Langmuir-Blodgett technique. Specifically, this paper reports the fabrication of mixed films as well as miscibility studies of 4-[4-(4-hexyloxyphenylethynyl)phenylethynyl]benzoic acid (HBPEB) and docosanoic (or behenic) acid (BA). Surface pressure vs. area per molecule isotherms were recorded, with excess area and excess Gibbs energy of mixing calculated. Surface potential-area per molecule isotherms were also recorded for mixtures over the whole range of mole fractions, with negative deviations from the additivity rule revealing orientational changes induced in the HBPEB molecules. The Langmuir films were transferred onto solid supports and characterized by SPM techniques, with atomic force microscopy (AFM) revealing that well-ordered, defect-free films are obtained. The use of scanning polarization force microscopy (SPFM), which provides non-contact imaging based on differences in surface charge distribution, i.e., surface potential, provides complimentary information regarding distribution of the components within the mixed films. From the comprehensive miscibility study performed, which includes thermodynamic and imaging methods, it can be concluded that the wire-like molecule and the fatty acid are miscible over the 0-0.1 and 0.8-1 ranges of HBPEB mole fraction while phase separation occurs for HBPEB mole fractions over the 0.1-0.8 range.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b716798aDOI Listing

Publication Analysis

Top Keywords

mixed films
16
force microscopy
12
fatty acid
12
scanning polarization
8
polarization force
8
molecule isotherms
8
isotherms recorded
8
mole fractions
8
hbpeb mole
8
films
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!