We demonstrate experimentally the ability to use a single-pixel detector for two-dimensional high-resolution x-ray imaging of fast dynamics. We image the rotation of a spinning chopper at 100 kHz and at spatial resolution of about 40 microns by using the computational ghost imaging approach. The technique we develop can be used for the imaging of fast dynamics of periodic and periodically stimulated effects with a large field of view and at low dose.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.396497DOI Listing

Publication Analysis

Top Keywords

imaging fast
12
fast dynamics
12
x-ray imaging
8
single-pixel detector
8
dynamics single-pixel
4
detector demonstrate
4
demonstrate experimentally
4
experimentally ability
4
ability single-pixel
4
detector two-dimensional
4

Similar Publications

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 seconds after initial model assembly using a regular workstation.

View Article and Find Full Text PDF

Background: While Alzheimer Disease (AD) patients' difficulty to recognize face identity (Werheid & Clare, 2007) has been mainly attributed to episodic and semantic memory impairments, these patients can also show abnormal difficulties at matching of unfamiliar faces for their identity, suggesting impaired perceptual function (Lavallée et al., 2016). However, since this latter evidence is based on explicit behavioural measures, the difficulties of AD patients can be due to many factors (e.

View Article and Find Full Text PDF

Background: Neuromodulatory subcortical systems (NSS) are affected from the early stages of Alzheimer's Disease (AD) by the accumulation of tau pathology. Increased tau burden within the subcortical nucleus that are in control of sleep and wake regulation may contribute to the breakdown of sleep-wake patterns in AD. A recent postmortem study showed that subcortical wake-promoting neurons were related to sleep phenotypes in AD and PSP, being that greater neuronal count in locus coeruleus (LC), tuberomammillary nucleus (TMN), and lateral hypothalamic area (LHA) associated with a decreased sleep drive (Oh et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!