We address the optical design procedure of prism-based stereoscopic imaging systems. Conventional approach includes two sequential stages: selection of the hardware and development of the proper digital image processing algorithms. At each of these stages, specific techniques are applied, which are almost unrelated to each other. The main requirements to the imaging system include only the key parameters and the image quality. Therefore, the insufficient measurement accuracy may be revealed only after the prototype is assembled and tested. In this case, even applying complex time-consuming image processing and calibration procedures does not ensure the necessary precision. A radical solution of this issue is to include the measurement error estimation into the optical design stage. In this research, we discuss a simplified implementation of this approach and demonstrate the capabilities of optical design software for this purpose. We demonstrate the effectiveness of this approach by the analysis and optimization of a prism-based stereoscopic imager with respect to required 3D measurement accuracy. The results are meaningful for the development of 3D imaging techniques for machine vision, endoscopic and measurement systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.400428DOI Listing

Publication Analysis

Top Keywords

optical design
16
prism-based stereoscopic
12
measurement accuracy
12
optimization prism-based
8
stereoscopic imaging
8
imaging systems
8
design stage
8
respect required
8
required measurement
8
image processing
8

Similar Publications

Clinical outcomes in peripheral ulcerative keratitis.

Am J Ophthalmol

January 2025

the Wilmer Eye Institute, the Department of Ophthalmology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA; the Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. Electronic address:

Purpose: To evaluate clinical and treatment outcomes in patients with peripheral ulcerative keratitis (PUK).

Design: Retrospective, case series SUBJECTS: Patients diagnosed with PUK at the Wilmer Eye Institute between January 2003 and October 2022.

Methods: Data collected included demographics, presence of systemic disease, disease laterality, duration of disease, PUK activity, presence of corneal perforation, and treatments.

View Article and Find Full Text PDF

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems.

View Article and Find Full Text PDF

The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.

View Article and Find Full Text PDF

Rational design of AIEgens through π-bridge engineering for dual-modal photodynamic and photothermal therapy.

Bioorg Med Chem

January 2025

School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research, Zunyi Medical University, Zunyi, Guizhou 563003, PR China. Electronic address:

A series of aggregation-induced emission luminogens (AIEgens) with donor-π-acceptor (D-π-A) architecture were rationally designed and synthesized through π-bridge engineering for dual-modal photodynamic and photothermal therapy. The AIEgens (TPT, TFT, and TTT) were constructed using methoxy-substituted tetraphenylene as the electron donor and tricyanofuran as the electron acceptor, connected via different π-bridges (phenyl, furan, or thiophene). These compounds exhibited red-shifted absorption (460-545 nm) and emission (712-720 nm) with remarkable aggregation-induced emission characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!